12 research outputs found

    C1: How the C1 platform will change the production approach for therapeutic proteins

    Get PDF
    For over 30 years, Dyadic has proven itself, both commercially and scientifically, to be a high quality and highly productive producer of enzymes and proteins for specialty chemical applications using a proprietary and patented expression system based on the Myceliopthora thermophila fungus, nicknamed C1. The C1 platform technology, a hyper-productive fungal expression system, was used to develop & manufacture large quantities of desired proteins at industrial scale at significantly lower capital and operating expenditures. In this presentation we shall demonstrate how the benefits of C1 as a successful production host is now being harnessed by Dyadic to produce biological medicines and vaccines. Using new and improved C1 base strains along with better molecular genetics tools that have been developed over the past several years, we demonstrate the ability of C1 to express mAbs that are secreted, folded correctly and reach high yields. MAbs produced in C1 have almost identical binding kinetics to mAbs produced using CHO cells. In addition, our research program includes comprehensive approach to identify and knock-out proteases for further enhancing protein stability and improving yields. We have also achieved encouraging results, knowledge and experience in the rVaccine space from our prior research collaboration with Sanofi Pasteur to express rVaccines against Influenza virus. Results of a mice test that was conducted by Sanofi Pasteur, clearly demonstrated that HA produced by C1, generated high immunogenicity response against the virus without any adverse affects. Like other filamentous fungal strains, C1 has high mannose glycoform structures. However, unlike most fungi and yeasts, C1 does not have ‘high’ mannose (branched 30-50 mannose species), but rather has ‘oligo’ mannose structure (branched 5-9 mannose species). In addition, no O-glycosylation has been observed on C1 secreted proteins, in contrast to Pichia that O-glycosylates all secreted antibodies, necessitating deletion of the O-glycosylation machinery. Using the benefits of those advantages, we have started Glycoengineering program aiming to develop C1 strain that produces proteins with defined human-like glycan patterns. The progress we have already made in C1 glycoengineering will also be presented. Thus, Dyadic firmly believe that the C1 strains that we are developing with offer certain competitive advantages over other leading pharmaceutical expression systems, such as CHO cells, has the potential to become the production system of choice for therapeutic protein and vaccines manufacturing

    Development of the filamentous fungus Thermothelomyces heterothallica C1 into a next-generation production platform for human and animal vaccines

    Get PDF
    engineering. The thermophilic fungus Thermothelomyces heterothallica is a robust and versatile fungal expression system for the rapid production of proteins at very high levels. In the last 6 years, the C1 protein production platform has been further improved to become a safe and efficient expression system with the prime objective of speeding up the development and production of commercial scale human and animal vaccines, monoclonal antibodies, biosimilars, as well as other therapeutic proteins at larger quantities and lower cost. C1 is a very efficient platform to produce antigens, even to generate multicomponent vaccines. The production levels of engineered C1 strains are similar in terms of yield and purity, reaching in some cases more than 2.5 g/L (in 4-5 days). In contrast to other vaccine platforms, C1 has a higher safety profile, and production can be scaled up in a more cost-effective manner using standard microbial E. coli fermenters. Stable cell lines have been developed to produce different antigens as influenza, neuraminidase, west Nile, rabies, rift valley fever..etc. Please click Download on the upper right corner to see the full abstract

    Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1

    Get PDF
    INTRODUCTION: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. METHODS: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. RESULTS: One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. DISCUSSION: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine

    The Highly Productive Thermothelomyces heterothallica C1 Expression System as a Host for Rapid Development of Influenza Vaccines

    No full text
    (1) Influenza viruses constantly change and evade prior immune responses, forcing seasonal re-vaccinations with updated vaccines. Current FDA-approved vaccine manufacturing technologies are too slow and/or expensive to quickly adapt to mid-season changes in the virus or to the emergence of pandemic strains. Therefore, cost-effective vaccine technologies that can quickly adapt to newly emerged strains are desirable. (2) The filamentous fungal host Thermothelomyces heterothallica C1 (C1, formerly Myceliophthora thermophila) offers a highly efficient and cost-effective alternative to reliably produce immunogens of vaccine quality at large scale. (3) We showed the utility of the C1 system expressing hemagglutinin (HA) and a HA fusion protein from different H1N1 influenza A virus strains. Mice vaccinated with the C1-derived HA proteins elicited anti-HA immune responses similar, or stronger than mice vaccinated with HA products derived from prototypical expression systems. A challenge study demonstrated that vaccinated mice were protected against the aggressive homologous viral challenge. (4) The C1 expression system is proposed as part of a set of protein expression systems for plug-and-play vaccine manufacturing platforms. Upon the emergence of pathogens of concern these platforms could serve as a quick solution for producing enough vaccines for immunizing the world population in a much shorter time and more affordably than is possible with current platforms

    Toxicity and Local Tolerance of a Novel Spike Protein RBD Vaccine Against SARS-CoV-2, Produced Using the C1 Thermothelomyces Heterothallica Protein Expression Platform

    No full text
    Coronavirus disease 2019 (COVID-19) has caused the ongoing COVID-19 pandemic and there is a growing demand for safe and effective vaccines. The thermophilic Thermothelomyces heterothallica filamentous fungal host, C1-cell, can be utilized as an expression platform for the rapid production of large quantities of antigens for developing vaccines. The aim of this study was to evaluate the local tolerance and the systemic toxicity of a C1-cell expressed receptor-binding domain (C1-RBD) vaccine, following repeated weekly intramuscular injections (total of 4 administrations), in New Zealand White rabbits. The animals were sacrificed either 3 days or 3 weeks following the last dose. No signs of toxicity were observed, including no injection site reactions. ELISA studies revealed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G antibodies in the sera of C1-RBD-treated animals starting from day 13 post injection, that were further elevated. Histopathology evaluation and immunohistochemical staining revealed follicular hyperplasia, consisting of B-cell type, in the spleen and inguinal lymph nodes of the treated animals that were sustained throughout the recovery phase. No local or systemic toxicity was observed. In conclusion, the SARS-CoV-2 C1-RBD vaccine candidate demonstrated an excellent safety profile and a lasting immunogenic response against receptor-binding domain, thus supporting its further development for use in humans

    A recombinant SARS-CoV-2 receptor-binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice

    No full text
    Since the beginning of the COVID-19 pandemic, the development of effective vaccines against this pathogen has been a priority for the scientific community. Several strategies have been developed including vaccines based on recombinant viral protein fragments. The receptor-binding domain (RBD) in the S1 subunit of S protein has been considered one of the main targets of neutralizing antibodies. In this study we assess the potential of a vaccine formulation based on the recombinant RBD domain of SARS-CoV-2 expressed in the thermophilic filamentous fungal strain Thermothelomyces heterothallica and the hepatitis B virus (HBV) core protein. Functional humoral and cellular immune responses were detected in mice. To our knowledge, this is the first report on the immune evaluation of a biomedical product obtained in the fungal strain T. heterothallica. These results together with the intrinsic advantages of this expression platform support its use for the development of biotechnology products for medical purpose

    Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1

    Get PDF
    Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.</p

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.</p
    corecore