36 research outputs found

    Synthesis of Fatty and N,N'-carbonyl Difatty Amides from Palm Oil and Their Applications as a Clay Modifier for Polylactic Acid/Epoxidized Palm Oil/Clay Nanocomposites Preparation

    Get PDF
    N,N-carbonyl difatty amides (CDFAs) were synthesized from palm oil and urea using sodium ethoxide as a catalyst. Ethyl fatty esters (EFEs) and glycerol were produced as by-products. The synthesis was carried out by refluxing the reactants in ethanol. In this reaction, palm oil gave 79% CDFAs after 8 h and at molar ratio of urea to palm oil of 6.2: 1. Meanwhile, fatty amides (FAs) were synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The highest conversion percentage of 96% was obtained when the process was carried for 36 h using urea to palm olein ratio of 5.2: 1.0 at 40 ºC. The method employed offers several advantages such as the use of renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product. Both CDFAs and the FAs were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) technique and elemental analysis. The CDFAs, FAs and fatty hydroxamic acids (which were also synthesized from palm oil) were used as organic compounds to modify natural clay, Na-MMT, (sodium montmorillonite) by an ion exchange process. The clay modification was carried out by stirring the clay particles in an aqueous solution of FAs, CDFAs and fatty hydroxamic acids (FHAs). The interaction of the modifier in the clay layer was characterized by X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Elemental analysis was used to estimate the presence of these fatty nitrogen compounds (FNCs) in the clay. The modified clay was then used in the preparation of the polylactic acid (PLA)/epoxidized palm oil (EPO) blend nanocomposites. The EPO was used as a plasticizer for PLA using chloroform as a solvent for solution casting process of blending PLA/EPO. The FTIR spectra indicate that there are some molecular interactions by intermolecular hydrogen bond between PLA and EPO. All PLA/EPO blends show high thermal stability and significant improvement of mechanical properties compare to those of pure the PLA. The highest elongation at break (about 210%) was obtained when the ratio of PLA/EPO blend was 80/20. Morphological results of PLA/EPO blends show that EPO was miscible with PLA. Reduced viscosities of the blends decrease with increasing amount of EPO indicating that EPO was a good plasticizer for PLA. The nanocomposites were synthesized by incorporating CDFA-MMT, FA-MMT or FHA-MMT into PLA/EPO blends. Preparation of nanocomposites were carried out by solution casting of the modified clay and PLA/EPO blend of the weight ratio of 80/20 which has the highest elongation at break. The highest tensile strength, modulus, and elongation at break of the FA-MMT, FHAMMT, and CDFA-MMT nanocomposites were obtained when 2% of the CDFA-MMT and 3% of both FA-MMT and FHA-MMT loadings were used. These nanocomposites were characterized using XRD, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and tensile properties measurements. The XRD and TEM results confirm that the products are nanocomposites. PLA/EPO modified clay nanocomposites has higher thermal stability and significant improvement of mechanical properties in comparison with those of the PLA/EPO blend

    Structure-property studies of thermoplastics and thermosetting polyurethanes using palm and soya oils-based polyols

    Get PDF
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4′-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, 1H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials

    Modification of Montmorillonite by new surfactants.

    Get PDF
    The sodium Montmorillonite is not susceptible to polymer due to its organophobic character and has low basal spacing. This study reports on the effect of three new organic cations including Triethyl Amine (TEA), Tripropyl Amine (TPA) and Trioctyl Amine (TOA) on the basal spacing of the clay as indictors to the sociability of the clay to the incorporation of polymers. The Fourier Transform Infrared spectroscopy (FTIR) was used to evaluate the incorporation of the three organic cations in the clay. The X-ray diffraction technique was utilized to indicate the basal spacing of the treated clay as a measure of the susceptibility of new organoclays. The FTIR, XRD and CHNS elemental analysis results shown that the three new organic cations acrylonitrile/montmorillonite were successfully incorporated in the Montmorollite clay. X-ray diffraction indicates that the basal spacings in acrylonitrile/montmorillonite of the treated clay with TEA, TPA and TOA individually increased by 14.2, 15.1 and 19.5Å, respectively. FTIR spectra illustrate that amine compounds were successfully intercalated into the clay layers

    Modification of montmorillonite by Difattyacyl thiourea using cation exchange process.

    Get PDF
    Cation exchange process was used to modify for montmorillonite (Na-MMT) by difatty acyl thiourea (DFAT). Basal spacing functional groups identification and thermal stability of this organomontmorillonite (OMMT) were characterized using X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy arid thermogravimetric analysis (TGA) respectively. Elemental analysis was also used to know the composition of OMMT.The (XRD) results showed that the basal spacing of the treated clay with DFAT increased from 1.23 nm to 3.05 nm. The highest d-spacing was observed at 2.00 CEC. FTIR spectra illustrate that DFAT compound was successfully intercalated into the clay layers. Thermogravimetric analysis shows that the thermal decomposition of organoclay occurs with higher temperature than pure DFAT

    Chemical synthesis and characterization of N-hydroxy-N-methyl fattyamide from palm oil.

    Get PDF
    In this study, N-hydroxy-N-methyl fattyamide (HMFA) has been synthesized by refluxing of palm oil and N, methyl hydroxylamine. The products were characterized using the complex formation test of hydroxamic acid group with copper(Π), various technique methods including nuclear magnetic resonance ('H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of palm oil to HMFA including the effect of reaction time, effect of organic solvent and effect of, M, methyl hydroxylamine /oil molar ratio were also investigated in this study. Results of characterization indicate that HMFA was successfully produced from palm oil. The conversion percentage of palm oil into N-hydroxy-N-methyl Fattyamide was around 79. Results also showed that hexane is the best organic solvent to produce the HMFA. The optimum reaction time to achieve the maximum conversion percentage of the palm oil into HMFA was found to be 16 hours, and the optimum molar ration of M, methyl hydroxylamine/oil was found to be 6.5:1.0

    Effect of epoxidized palm oil on the mechanical and morphological properties of a PLA–PCL blend

    Get PDF
    In this study, the effects of epoxidized palm oil (EPO) on the mechanical and morphological properties of a blend of two types of biodegradable polymer, poly(lactic acid) (PLA) and polycaprolactone (PCL), were investigated. The solution-casting process, with chloroform as a solvent, was used to prepare samples. Addition of EPO reduced the tensile strength and modulus but increased elongation at break for the PLA–PCL blend. The highest elongation at break was observed for the blend with 10 % (w/w) EPO content. Scanning electron microscopy (SEM) indicated that the fractured surface morphology of the PLA–PCL blend became more stretched and homogeneous in PLA–PCL–EPO. Possible interactions between the PLA–PCL blend and EPO were also characterized by use of Fourier-transform infrared (FTIR) spectroscopy. Thermal stability was studied by differential scanning calorimetry and thermogravimetric analysis. The results from FTIR and SEM revealed that the miscibility of the PLA–PCL blend was improved by addition of EPO

    Synthesis and characterization of fatty hydroxamic acids from triacylglycerides

    Get PDF
    In this study, fatty haydroxamic acids (FHAs), which have biological activities as antibiotics and antifungal, have been synthesized via refluxing of triacylglycrides, palm olein, palm stearin or corn oil with hydroxylamine hydrochloride. The products were characterized using the complex formation test of hydroxamic acid group with zinc(I), copper(II) and iron(III), various technique methods including nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of oils to FHAs including the effect of reaction time, effect of organic solvent and effect of hydro/oil molar issue were also investigated in this study. Results of characterization indicate that FHAs were successfully produced from triacylglycrides. The conversion percentages of palm stearin, palm olein and corn oil into their fatty hydroxamic acids are 82, 81 and 78, respectively. Results also showed that hexane is the best organic solvent to produce the FHAs from the three oils used in this study. The optimum reaction time to achieve the maximum conversion percentage of the oils to FHAs was found to be 10 hours for all the three oils, while the optimum molar ration of hydro/to oil was found to be 7:1 for all the different three oils

    Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites

    Get PDF
    Biopolymer nanocomposites, which have attracted much attention due to their biodegradability and biocompatibility, have been prepared by melt blending polylactic acid (PLA)/polycaprolactone (PCL) and two types of organoclay (OMMT) include octadecylamine-montmorillonite (ODA-MMT) and fatty hydroxamic acid- montmorillonite (FHA-MMT). Materials were characterized using X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis and scanning electron microscopy (SEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed intercalated nanocomposites. SEM morphology showed that increasing content of OMMT reduces the domain size of phase separated particles. Additionally, a solution casting process has been used to prepare these nanocomposites and characterized to compare these results with above process. These nanocomposites offer potential for diversification and application of biopolymer due to their good properties such as improved thermal and mechanical properties

    Enzymatic synthesis of fatty amides from palm olein

    Get PDF
    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1 H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40°C. The method employed offers several advantages such as renewable and abundant of the raw material,simple reaction procedure, environmentally friendly process and high yield of the product
    corecore