6 research outputs found

    The Carpathian lingonberry, raspberry and blackberry fruit extracts feature variable antimicrobial efficiency

    Get PDF
    Wild berry is an excellent source of phytonutrients and/or bioactive compounds associated with significant therapeutic properties, so that they have been utilized in folk medicine and traditional nutrition throughout centuries. Multiple health-promoting effects, such as anti-inflammatory, anti-diabetic, anti-heart and coronary disease properties were attributed to such wild berries. It has also been proved that berries could feature antimicrobial effects that could be of a great importance for the prevention of food-feed poisoning and fighting back antibiotic resistance. In this study, we investigated the antimicrobial properties of lingonberry (Vaccinium vitis-idaea), raspberry (Rubus idaeus) and blackberry (Rubus fruticosus) crude and ethanolic extracts prepared from fruits obtained from the spontaneous flora of Eastern Carpathian Mountains situated in Transylvania. The antimicrobial effect of crude and alcoholic extracts were assessed on four Gram-negative, five Gram-positive bacteria and one yeast species using the agar diffusion method. The studied bacteria can cause food or feed spoilage and foodborne diseases. Our results indicate the significant inhibitory effect of lingonberry extracts in the case of Gram-negative bacteria like Proteus vulgaris and Salmonella Hartford, while among Gram-positive bacteria the strongest inhibitory effect was observed for Bacillus species like B. cereus, B. subtilis, B. mojavensis and Micrococcus luteus. The raspberry and blackberry extracts featured milder inhibitory effects in the case of the studied bacteria species. Furthermore, we have studied the crude or ethanolic extract combinations associated antimicrobial effects synergistic/additive or antagonistic properties. Interestingly, the triple and double ethanolic extract mixes had stronger antimicrobial properties, whereas the crude extract mixes showed relatively reduced effects, if any. Our results indicate that the antimicrobial activity of studied fruit extracts obtained from wild berries can vary upon the applied extraction method and their combination formulae, so that all these considerations must be taken into account when such fruit extracts are considered for foodstuff development

    Essential oil extraction from herbs and their use in the food industry

    Get PDF
    Essential oil extraction of wild caraway and thyme was performed using a classical (HD) and microwave hydro-distillation (MWHD) and a laboratory supercritical fluid extraction (SFE) with a carbon dioxide as solvent. Our experiments demonstrated that the extraction yield of the essential oil performed in same conditions was influenced by the location of growth area; the maximum extraction yield of 10 ml 100 g-1 caraway was obtained from dried seeds collected from Csíkmadaras. This quantity far exceeded the yield of the Újtusnád samples. In the case of wild caraway (Carum carvi L.), the extraction method influenced thecomposition of the essential oil (carvone/limonene ratio), the highest limonene content being achieved by classical hydro-distillation. In the case of thyme, this effect was not detected, the thymol/carvacrol ratio was independent from the given extraction method. The obtained thyme essential oil possesses high antimicrobial activity demonstrated by agar diffusion test. The thyme extract provides a good protection against microorganisms collected on the surface of fresh vegetables following bacterial stains: Citrobacter portucalensis, Pseudomonas hunanensis, Pseudomonas baetica, Pseudomonas parafulva, Bacillus mojavensis and Enterobacter cloacae. Protective effect was also detected on the vegetable surface of by chitosan-based edible film coating during a 6-day-long storage period at a temperature of 4 °C. The caraway essential oil used as soft cheese seasoning with a direct, dilution-free method, proved to be unsuitable because the uneven distribution and confer a strong, unpleasant taste to the product in comparison with the ground wild caraway seed-dressed cheese

    The Flavonoid Rich Black Currant (<i>Ribes nigrum</i>) Ethanolic Gemmotherapy Extract Elicits Neuroprotective Effect by Preventing Microglial Body Swelling in Hippocampus and Reduces Serum <i>TNF-α</i> Level: Pilot Study

    No full text
    Many plant-derived flavonoids are known for their anti-neuroinflammatory and anti-neurodegenerative effects. The fruits and leaves of the black currant (BC, Ribes nigrum) contain these phytochemicals with therapeutic benefits. The current study presents a report on a standardized BC gemmotherapy extract (BC-GTE) that is prepared from fresh buds. It provides details about the phytoconstituent profile specific to the extract as well as the associated antioxidant and anti-neuroinflammatory properties. The reported BC-GTE was found to contain approximately 133 phytonutrients, making it unique in its composition. Furthermore, this is the first report to quantify the presence of significant flavonoids such as luteolin, quercetin, apigenin, and kaempferol. Drosophila melanogaster-based tests revealed no cytotoxic but nutritive effects. We also demonstrated that adult male Wistar rats, pretreated with the analyzed BC-GTE and assessed after lipopolysaccharide (LPS) injection, did not show any apparent increase in body size in the microglial cells located in the hippocampal CA1 region, while in control experiments, the activation of microglia was evident. Moreover, no elevated levels of serum-specific TNF-α were observed under the LPS-induced neuroinflammatory condition. The analyzed BC-GTE’s specific flavonoid content, along with the experimental data based on an LPS-induced inflammatory model, suggest that it possesses anti-neuroinflammatory/neuroprotective properties. This indicates that the studied BC-GTE has the potential to be used as a GTE-based complementary therapeutic approach

    Specific Antimicrobial Activities Revealed by Comparative Evaluation of Selected Gemmotherapy Extracts

    No full text
    Nowadays, unprecedented health challenges are urging novel solutions to address antimicrobial resistance as multidrug-resistant strains of bacteria, yeasts and moulds are emerging. Such microorganisms can cause food and feed spoilage, food poisoning and even more severe diseases, resulting in human death. In order to overcome this phenomenon, it is essential to identify novel antimicrobials that are naturally occurring, biologically effective and increasingly safe for human use. The development of gemmotherapy extracts (GTEs) using plant parts such as buds and young shoots has emerged as a novel approach to treat/prevent human conditions due to their associated antidiabetic, anti-inflammatory and/or antimicrobial properties that all require careful evaluations. Seven GTEs obtained from plant species like the olive (Olea europaea L.), almond (Prunus amygdalus L.), black mulberry (Morus nigra L.), walnut (Juglans regia L.), blackberry (Rubus fruticosus L.), blackcurrant (Ribes nigrum L.) and bilberry (Vaccinium myrtillus L.) were tested for their antimicrobial efficiency via agar diffusion and microbroth dilution methods. The antimicrobial activity was assessed for eight bacterial (Bacillus cereus, Staphylococcus aureus, Salmonella enterica subsp. enterica, Proteus vulgaris, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Listeria monocytogenes), five moulds (Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum) and one yeast strain (Saccharomyces cerevisiae). The agar diffusion method revealed the blackberry GTE as the most effective since it inhibited the growth of three bacterial, four moulds and one yeast species, having considered the total number of affected microorganism species. Next to the blackberry, the olive GTE appeared to be the second most efficient, suppressing five bacterial strains but no moulds or yeasts. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were then determined for each GTE and the microorganisms tested. Noticeably, the olive GTE appeared to feature the strongest bacteriostatic and bactericidal outcome, displaying specificity for S. aureus, E. faecalis and L. monocytogenes. The other GTEs, such as blueberry, walnut, black mulberry and almond (the list indicates relative strength), were more effective at suppressing microbial growth than inducing microbial death. However, some species specificities were also evident, while the blackcurrant GTE had no significant antimicrobial activity. Having seen the antimicrobial properties of the analysed GTEs, especially the olive and black mulberry GTEs, these could be envisioned as potential antimicrobials that might enhance antibiotic therapies efficiency, while the blackberry GTE would act as an antifungal agent. Some of the GTE mixtures analysed have shown interesting antimicrobial synergies, and all the antimicrobial effects observed argue for extending these studies to include pathological microorganisms

    Phytoconstituent Profiles Associated with Relevant Antioxidant Potential and Variable Nutritive Effects of the Olive, Sweet Almond, and Black Mulberry Gemmotherapy Extracts

    No full text
    The extracts of whole plants or specific organs from different plant species are gaining increasing attention for their phytotherapy applications. Accordingly, we prepared standardized gemmotherapy extracts (GTEs) from young shoots/buds of olive (Olea europaea), sweet almond (Prunus amygdalus), and black mulberry (Morus nigra), and analyzed the corresponding phytonutrient profiles. We identified 42, 103, and 109 phytonutrients in the olive, almond, and black mulberry GTEs, respectively, containing amino acids, vitamins, polyphenols, flavonoids, coumarins, alkaloids, iridoids, carboxylic acids, lignans, terpenoids, and others. In order to assess the physiological effects generated by the GTEs, we developed a translational nutrition model based on Drosophila melanogaster and Cyprinus carpio. The results indicate that GTEs could influence, to a variable extent, viability and ATP synthesis, even though both are dependent on the specific carbohydrate load of the applied diet and the amino acid and polyphenol pools provided by the GTEs. It seems, therefore, likely that the complex chemical composition of the GTEs offers nutritional properties that cannot be separated from the health-promoting mechanisms that ultimately increase viability and survival. Such an approach sets the paves the way for the nutritional genomic descriptions regarding GTE-associated health-promoting effects
    corecore