106 research outputs found

    A Holistic Comparative Analysis of Different Storage Systems using Levelized Cost of Storage and Life Cycle Indicators

    Get PDF
    AbstractIn this study, a detailed economic analysis is combined with an ecological analysis of electricity storage systems. On the economic side, a “Levelized Cost of Storage (LCOS)” analysis is conducted, which assesses the cost of stored electricity. The LCOS is determined for a specific case of a private household in combination with a PV system. On the ecological side a “Life Cycle Assessment” (LCA) is used to calculate the environmental impact of electricity storage as well as the CO2 abatement costs. In the parameterized LCA the energy generation process used to feed the storage system, the material and the energy demand during the life cycle of the storage options is considered. With the parameterized LCA approach, the ecologically most rational storage systems can be identified. Results show that PV storage systems at household level are an environmental friendly option to increase the self-consumption and will be economically attractive in about ten years

    A plant‐specific model approach to assess effects of repowering measures on existing biogas plants: the case of Baden‐Wuerttemberg

    Get PDF
    Up to the latest versions of the German renewable energy act (EEG), there had been a constant growth of new biogas plants (BGPs). After reaching a stagnation in the last years, today the focus has shifted to improving the existing BGPs. Assuming that most plants have not reached the technical end of life, the question arises on how an operation can be realized beyond the initial EEG support period of 20 years. In addition, new legal and economic conditions require the implementation of adjustments, that is, “repowering measures.” Based on a method review, a plant‐specific model approach is presented to assess repowering measures for a wide range of BGPs differing in capacity, substrate mixture and agricultural structures. The techno‐economic model includes different performance indicators like levelized cost of electricity (LCOE) and temporal aspects like technical progress. Using a data set for BGPs in the state of Baden‐Wuerttemberg (Germany), results are illustrated for the different model modules and three repowering scenarios of an extended operation period of ten years. The scenarios regard different options to meet the requirements of the current EEG, namely the flexibilization and restrictions on energy crops, in comparison with a reference case. While in repowering scenarios, the number of plants decreases between 54% and 69% and the overall power capacity changes between -48% and 13% until 2035. The results further show a reduction potential in the specific area demand and GHG emission up to 12% and 24%, respectively. Technical progress, additional revenues and capacity premiums are shown to be an important factor for efficient substrate utilization, low LCOE and thereby the enabling of an extended operation period. The scenario results indicate that the agricultural areas for energy crop cultivation and the amount of manure used in BGPs will be reduced considerably, inducing new chances and challenges in the future

    Rapid Planning fĂŒr hochdynamische StĂ€dte

    Get PDF
    StĂ€dte und Metropolen mit rasanter Entwicklung stehen vor besonderen Herausforderungen. Mit Rapid Planning steht ihnen nun eine Methode zur VerfĂŒgung, mit der sie die Synergien der Planung von Infrastruktur, Umwelt und Ressourcen nutzung erschließen können

    Efficiency and costs of different concentrated solar power plant configurations for sites in Gauteng and the Northern Cape, South Africa

    Get PDF
    Concentrated solar power (CSP) plants can play a major role in the future South African electricity mix. Today the Independent Power Producer (IPP) Procurement Programme aims to facilitate renewable energy projects to access the South African energy market. In spite of this incentive programme, the future role of CSP plants in South Africa has yet to be defined. Using hourly irradiance data, we present a new method to calculate the expected yield of different parabolic trough plant configurations at a site in each of Gauteng and the Northern Cape, South Africa. We also provide cost estimates of the main plant components and an economic assessment that can be used to demonstrate the feasibility of solar thermal power projects at different sites. We show that the technical configurations, as well as the resulting cost of electricity, are heavily dependent on the location of the plant and how the electricity so generated satisfies demand. Today, levelised electricity costs for a CSP plant without storage were found to be between 101 and 1.52 ZAR2010/kWhel, assuming a flexible electricity demand structure. A CSP configuration with Limited Storage produces electricity at costs between 1.39 and 1.90 ZAR2010/kWhel, whereas that with Extended Storage costs between 1.86 and 2.27 ZAR2010/kWhel. We found that until 2040 a decrease in investment costs results in generating costs between 0.73 ZAR2010/kWhel for a CSP plant without storage in Upington and 1.16 ZAR2010/ kWhel for a configuration with Extended Storage in Pretoria. These costs cannot compete, however, with the actual costs of the traditional South African electricity mix. Nevertheless, a more sustainable energy system will require dispatchable power which can be offered by CSP including storage. Our results show that the choice of plant configuration and the electricity demand structure have a significant effect on costs. These results can help policymakers and utilities to benchmark plant performance as a basis for planning

    Efficiency and costs of different concentrated solar power plant configurations for sites in Gauteng and the Northern Cape, South Africa

    Get PDF
    Concentrated solar power (CSP) plants can play a major role in the future South African electricity mix. Today the Independent Power Producer (IPP) Procurement Programme aims to facilitate renewable energy projects to access the South African energy market. In spite of this incentive programme, the future role of CSP plants in South Africa has yet to be defined. Using hourly irradiance data, we present a new method to calculate the expected yield of different parabolic trough plant configurations at a site in each of Gauteng and the Northern Cape, South Africa. We also provide cost estimates of the main plant components and an economic assessment that can be used to demonstrate the feasibility of solar thermal power projects at different sites. We show that the technical configurations, as well as the resulting cost of electricity, are heavily dependent on the location of the plant and how the electricity so generated satisfies demand. Today, levelised electricity costs for a CSP plant without storage were found to be between 101 and 1.52 ZAR2010/kWhel, assuming a flexible electricity demand structure. A CSP configuration with Limited Storage produces electricity at costs between 1.39 and 1.90 ZAR2010/kWhel, whereas that with Extended Storage costs between 1.86 and 2.27 ZAR2010/kWhel. We found that until 2040 a decrease in investment costs results in generating costs between 0.73 ZAR2010/kWhel for a CSP plant without storage in Upington and 1.16 ZAR2010/ kWhel for a configuration with Extended Storage in Pretoria. These costs cannot compete, however, with the actual costs of the traditional South African electricity mix. Nevertheless, a more sustainable energy system will require dispatchable power which can be offered by CSP including storage. Our results show that the choice of plant configuration and the electricity demand structure have a significant effect on costs. These results can help policymakers and utilities to benchmark plant performance as a basis for planning

    SatellitengestĂŒtzte Charakterisierung der Stadtmorphologie in Kigali (Ruanda) und VerknĂŒpfung mit einer transsektoralen Verbrauchsanalyse

    Get PDF
    Basisdaten zur Stadtmorphologie sowie Daten ĂŒber die spezifischen Bedarfe und VerbrĂ€uche der Sektoren wie Energie, Wasser und Abwasser, sind fĂŒr die Stadtplanung und die Planung von Infrastruktur wichtig. Gerade in sich dynamisch entwickelnden urbanen Regionen des Globalen SĂŒdens liegen diese Daten zumeist nicht vor. Die vorliegende Studie zeigt, dass mittels Satelliten-Fernerkundung und Haushaltsbefragungen diese InformationslĂŒcken geschlossen werden können. Mittels PlĂ©iades- und RapidEye-Aufnahmen konnten fĂŒr die Stadt Kigali die Stadtmorphologie und die Anzahl von GebĂ€uden erhoben sowie eine Typisierung der GebĂ€ude durchgefĂŒhrt werden. Die Haushaltsbefragung zeigt einen direkten Zusammenhang zwischen Stadtstruktur/GebĂ€udetyp und nutzerspezifischen Verbrauchs- und Bedarfswerten

    Economic and environmental analysis of solar water heater utilisation in Gauteng Province, South Africa

    Get PDF
    This paper focuses on the energy economics and environmental impacts of solar water heaters (SWH) in the Gauteng Province and compares the results with other technology options for residential water heating with regard to the different income groups. The critical energy situation in South Africa and the highly coal dependent energy generation demonstrates the need to shift to a more sustainable way of living. The residential sector proves to be an optimal starting point to implement new technologies, especially for water heating. The residential hot water demand calculation shows that the annual demand in Gauteng is about 188 million cubic meters. In order to satisfy this demand, different technologies are investigated in this paper, where SWHs lie in focus. Due to the vast income inequality in Gauteng, and also in South Africa, it is obvious that there cannot be one single optimal solution suitable to all households. Therefore, this paper focuses on the differentiation of the residential sector into income groups to show the divergence in warm water demand and the applicability of alternative technologies. In order to analyse appropriate solutions for all income groups, low-cost alternatives are also analysed. The economic analysis shows that although SWHs have higher investment costs than conventional technologies, the payback periods are relatively short (between 3 and 4 years) for high and mid income groups. The payback periods will be even shorter when the planned electricity price tariff increase comes into effect. Furthermore, SWH utilisation has the additional effect of reducing the overall electricity demand up to 70% and greenhouse gas emissions significantly. In addition, SWHs are the most cost-effective water heating technology to reduce greenhouse gas emissions for mid and high income groups with negative abatement costs. It is concluded that the SWHs are the most suitable option to decrease fossil energy consumption and reduce the household’s expenditure for energy services, especially for mid and high income groups. For lower income groups the utilisation of solar energy can increase the access to energy services and living quality and, therewith, lessen the financial burden to meet their energy needs

    Methodenhandbuch „Bioenergie als FlexibilitĂ€tsoption im Energiesystem”

    Get PDF
    Bioenergie – das Multitalent mit den vielen verschiedenen Konversionspfaden und Nutzungsmöglichkeiten aus den vielfĂ€ltigen nachwachsenden Rohstoffen! Wird ihre Rolle im Energiesystem angemessen gewĂŒrdigt? Werden ihre Funktion und ihre besonderen Potenziale im Systemzusammenhang realistisch dargestellt und analysiert? Welche KenngrĂ¶ĂŸen sind zur Abbildung des hochgradig diversen Bioenergieanlagenparks von relevanter Bedeutung fĂŒr die Systemanalyse? Dies ist ein Ausschnitt der zentralen Fragen, mit denen sich dieses Handbuch aus methodischer Sicht beschĂ€ftigt. Im Rahmen des vom BMWi im Programm „Energetische Biomassenutzung“ geförderten Projektes „OptiSys“ (FKZ 03KB129) haben sich die Projektpartner deshalb mit der Frage beschĂ€ftigt, wie die Bioenergie im großen Zusammenhang des Energiesystems adĂ€quat beschrieben werden kann bzw. sollte. Im Projekt wurde dazu am Beispiel des Biogas-Sektors in Deutschland untersucht, wie sich die zentralen technischen, ökonomischen und ökologischen Eigenschaften von Biogasanlagen in Anlagenparks und im Energiesystem sinnvoll systematisieren und typisieren las-sen. DarĂŒber hinaus wurde die EinflussstĂ€rke der so strukturierten Anlagenparameter auf die Ergebnisse der Modellierung des Energieversorgungssystem Deutschland erarbeitet, um die Relevanz einzelner Parameter herauszuarbeiten und darzustellen. Im Modell wurden sowohl der Strom- und WĂ€rmemarkt als auch der Transportsektor berĂŒcksichtigt, wenngleich nicht im identischen Detailierungsgrad. Im Ergebnis halten Sie nun ein Methodenhandbuch in den HĂ€nden, aus dem sowohl erfahrene Energiesystemmodellierende als auch Neulinge fundiert und umfangreich in Erfahrung bringen können, wie die Bioenergie im Energiesystemzusammenhang modelliert und analysiert werden kann bzw. sollte. Vom Leser wird dabei kein Expertenwissen zur Bioenergie vorausgesetzt, vielmehr reduziert das Methodenhandbuch das Fachwissen der Biogastechnik auf wenige fĂŒr die Systemmodellierung relevante Aspekte. Dieses Handbuch soll den Nutzer unterstĂŒtzen eine bewusste Technologie- und Parameterauswahl fĂŒr den verwendeten Systemkontext zu treffen und diese auch entsprechend zu kommunizieren. Im Methodenhandbuch werden zum einen allgemein ĂŒbertragbare Erkenntnisse und Methoden fĂŒr die Modellierung der Bioenergie formuliert (Teil I) und zum anderen die spezifischen Annahmen aus dem Projekt „OptiSys“ transparent dargestellt (Teil II). Die Verfassenden dieses Methodenhandbuches erheben damit keinen Anspruch auf eine voll-stĂ€ndige Darstellung aller Facetten der Bioenergie oder auf eine AllgemeingĂŒltigkeit der Aussagen zur modelltechnischen Abbildung. Vielmehr geht es um Anregungen, Impulse und Reflexionen bezogen auf das komplexe Themenfeld Bioenergienutzung als Bestandteil der Energiewende. Durch die adĂ€quate BerĂŒcksichtigung der Bioenergie sollen die Ergebnisse zukĂŒnftiger Systemanalysen belastbarer und die QualitĂ€t erhöht werden. Das vorliegende Methodenhandbuch will die im Projekt gewonnenen ErfahrungsschĂ€tzen teilen. Ein Beitrag dazu ist sicherlich auch der in Teil II bereitgestellte umfangreiche Datensatz zu den technischen und ökonomischen Parametern der untersuchten Biogaskonzepte

    Economic and environmental analysis of solar water heater utilisation in Gauteng Province, South Africa

    Get PDF
    This paper focuses on the energy economics and environmental impacts of solar water heaters (SWH) in the Gauteng Province and compares the results with other technology options for residential water heating with regard to the different income groups. The critical energy situation in South Africa and the highly coal dependent energy generation demonstrates the need to shift to a more sustainable way of living. The residential sector proves to be an optimal starting point to implement new technologies, especially for water heating. The residential hot water demand calculation shows that the annual demand in Gauteng is about 188 million cubic meters. In order to satisfy this demand, different technologies are investigated in this paper, where SWHs lie in focus. Due to the vast income inequality in Gauteng, and also in South Africa, it is obvious that there cannot be one single optimal solution suitable to all households. Therefore, this paper focuses on the differentiation of the residential sector into income groups to show the divergence in warm water demand and the applicability of alternative technologies. In order to analyse appropriate solutions for all income groups, low-cost alternatives are also analysed. The economic analysis shows that although SWHs have higher investment costs than conventional technologies, the payback periods are relatively short (between 3 and 4 years) for high and mid income groups. The payback periods will be even shorter when the planned electricity price tariff increase comes into effect. Furthermore, SWH utilisation has the additional effect of reducing the overall electricity demand up to 70% and greenhouse gas emissions significantly. In addition, SWHs are the most cost-effective water heating technology to reduce greenhouse gas emissions for mid and high income groups with negative abatement costs.It is concluded that the SWHs are the most suitable option to decrease fossil energy consumption and reduce the household’s expenditure for energy services, especially for mid and high income groups. For lower income groups the utilisation of solar energy can increase the access to energy services and living quality and, therewith, lessen the financial burden to meet their energy needs
    • 

    corecore