133 research outputs found

    MutPred mutational load analysis shows mildly deleterious mitochondrial DNA variants are not more prevalent in Alzheimer's patients, but may be under-represented in healthy older individuals

    Get PDF
    Mitochondrial DNA (mtDNA) association studies have been conducted for over a decade using the haplogroup (lineage) association method, but this frequently produces conflicting results. Here we analyzed complete mtDNA sequence data of Alzheimer's disease (AD) patients and aged controls, from the United Kingdom (UK) and the United States (US), using a new “mutational load” method. We calculated a pathogenicity score for each of the non-synonymous substitutions of the mtDNA sequences to produce a “total mutational load” for each sequence, and compared the mutational loads of cases and controls. Using these mutational load measures, we found no evidence to support the cumulative role of mtDNA variants as a susceptibility factor in AD; that is, AD patients (UK and US cohorts) did not have higher “mutational loads” than controls. However, the US aged controls, who are significantly older than the UK ones, with many showing evidence of being healthy and having good cognition in old age, had significantly lower “mutational loads”. This finding suggests that low mtDNA mutational load is more prevalent in healthy older people

    Single-cell approaches for studying the role of mitochondrial DNA in neurodegenerative disease

    Get PDF
    In light of accumulating evidence suggestive of cell type-specific vulnerabilities as a result of normal aging processes that adversely affect the brain, as well as age-related neurodegenerative disorders such as Parkinson's disease (PD), the current chapter highlights how we study mitochondrial DNA (mtDNA) changes at a single-cell level. In particular, we comment on increasing questioning of the narrow neurocentric view of such pathologies, where microglia and astrocytes have traditionally been considered bystanders rather than players in related pathological processes. Here we review the contribution made by single-cell mtDNA alterations towards neuronal vulnerability seen in neurodegenerative disorders, focusing on PD as a prominent example. In addition, we give an overview of methodologies that support such experimental investigations. In considering the significant advances that have been made in recent times for developing mitochondria-specific therapies, investigations to account for cell type-specific mitochondrial patterns and how these are altered by disease hold promise for delivering more effective disease-modifying therapeutics

    Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease

    Get PDF
    Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions, including certain motor and nonmotor symptoms. This realization has led to low-frequency stimulation of the PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities. However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward designing more efficient therapies aimed at restoring the PPN's normal functions during progressive parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mitochondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic outflow

    Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness

    Get PDF
    The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants

    Does mitochondrial DNA predispose to neuromyelitis optica (Devic's disease)?

    Get PDF
    Neuromyelitis optica (NMO), or Devic's disease, is a relapsing demyelinating disease of the central nervous system characterized by optic neuritis and myelitis with distinct clinical, imaging, CSF and serological features (Wingerchuk et al. , 2006). There is increasing evidence that NMO is an antibody-mediated organ-specific autoimmune disease associated with anti-aquaporin 4 antibodies detectable in serum (Lennon et al. , 2004), supported by four recent papers in the same edition of Brain (Matsuoka et al. , 2007; Misu et al. , 2007; Roemer et al. , 2007; Takahashi et al. , 2007) and the accompanying scientific commentary (Compston, 2007). However, it is still not known why the disorder specifically targets the optic nerves and spinal cord. Several siblings with NMO have been reported (McAlpine, 1938; Keegan and Weinshenker, 2000; Yamakawa et al. , 2000), raising the possibility of a genetic predisposition, but no pathogenic mutations have been identified in the AQP4 gene on chromosome 18q11.2-q12.1 (Lu et al. , 1996). NMO has similarities with Leber hereditary optic neuropathy (LHON, MIM 535 000) which is primarily due to mutations of mitochondrial DNA (mtDNA) that disrupt complex I of the respiratory chain (Carelli et al. , 2004). Although the genetic defect in LHON is present in all tissues, the pathology also is strikingly tissue-specific. Most affected individuals develop sub-acute painless visual failure due to focal involvement of both optic nerves (Newman et al. , 1991; Riordan-Eva et al. , 1995), but some also develop a progressive myelopathy, with high signal extending over multiple spinal levels on MR imaging, and the absence of oligoclonal bands in the CSF (Johns et al. , 1991; Jaros et al. , 2007). Tissue-specific susceptibility to mitochondrial dysfunction is thought to explain why the neurodegeneration in LHON only affects specific neuronal

    Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson’s disease

    Get PDF
    In Parkinson’s disease (PD), mitochondrial dysfunction associates with nigral dopaminergic neuronal loss. Cholinergic neuronal loss co-occurs, particularly within a brainstem structure, the pedunculopontine nucleus (PPN). We isolated single cholinergic neurons from post-mortem PPNs of aged controls and PD patients. Mitochondrial DNA (mtDNA) copy number and mtDNA deletions were increased significantly in PD patients compared to controls. Furthermore, compared to controls the PD patients had significantly more PPN cholinergic neurons containing mtDNA deletion levels exceeding 60%, a level associated with deleterious effects on oxidative phosphorylation. The current results differ from studies reporting mtDNA depletion in nigral dopaminergic neurons of PD patients

    Mitochondrial complex activity in permeabilised cells of chronic fatigue syndrome patients using two cell types

    Get PDF
    Abnormalities in mitochondrial function have previously been shown in chronic fatigue syndrome (CFS) patients, implying that mitochondrial dysfunction may contribute to the pathogenesis of disease. This study builds on previous work showing that mitochondrial respiratory parameters are impaired in whole cells from CFS patients by investigating the activity of individual mitochondrial respiratory chain complexes. Two different cell types were used in these studies in order to assess individual complex activity locally in the skeletal muscle (myotubes) (n = 6) and systemically (peripheral blood mononuclear cells (PBMCs)) (control n = 6; CFS n = 13). Complex I, II and IV activity and respiratory activitysupported by fatty acid oxidation and glutaminolysis were measured usingextracellular flux analysis. Cells were permeabilised and combinations of substrates and inhibitors were added throughout the assays to allow states of mitochondrial respiration to be calculated and the activity of specific aspects of respiratory activity to be measured. Results showed there to be no significant differences in individual mitochondrial complex activity or respiratory activity supported by fatty acid oxidation or glutaminolysis between healthy control and CFS cohorts in either skeletal muscle (p ≥ 0.190) or PBMCs (p ≥ 0.065). This is the first study to use extracellular flux analysisto investigate individual mitochondrial complex activity in permeabilised cells in the context of CFS. The lack of difference in complex activity in CFS PBMCs suggests that the previously observed mitochondrial dysfunction in whole PBMCs is due to causes upstream of the mitochondrial respiratory chain

    New mtDNA Association Model, MutPred Variant Load, Suggests Individuals With Multiple Mildly Deleterious mtDNA Variants Are More Likely to Suffer From Atherosclerosis

    Get PDF
    The etiology of common complex diseases is multifactorial, involving both genetic, and environmental factors. A role for mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation has been suggested in the pathogenesis of common complex traits. The aim of this study was to investigate a potential role of mtDNA variants in the development of obesity, diabetes, and atherosclerosis in the Polish population. Whole mtDNA sequences from 415 Polish individuals representing three disease cohorts and a control group were obtained using high-throughput sequencing. Two approaches for the assessment of mtDNA variation were applied, traditional mitochondrial haplogroup association analysis and the mutational or variant load model using the MutPred pathogenicity prediction algorithm for amino acid substitutions in humans. We present a possible association between mildly deleterious mtDNA variant load and atherosclerosis that might be due to having more than one likely mildly deleterious non-synonymous substitution. Moreover, it seems largely dependent upon a few common haplogroup associated variants with MutPred score above 0.5

    Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach

    Get PDF
    Background Alzheimer’s disease (AD) is the most frequently diagnosed neurodegenerative disorder affecting humans, with advanced age being the most prominent risk factor for developing AD. Despite intense research efforts aimed at elucidating the precise molecular underpinnings of AD, a definitive answer is still lacking. In recent years, consensus has grown that dimerisation of the polypeptide amyloid-beta (Aß), particularly Aß42, plays a crucial role in the neuropathology that characterise AD-affected post-mortem brains, including the large-scale accumulation of fibrils, also referred to as senile plaques. This has led to the realistic hope that targeting Aß42 immunotherapeutically could drastically reduce plaque burden in the ageing brain, thus delaying AD onset or symptom progression. Stochastic modelling is a useful tool for increasing understanding of the processes underlying complex systems-affecting disorders such as AD, providing a rapid and inexpensive strategy for testing putative new therapies. In light of the tool’s utility, we developed computer simulation models to examine Aß42 turnover and its aggregation in detail and to test the effect of immunization against Aß dimers. Results Our model demonstrates for the first time that even a slight decrease in the clearance rate of Aß42 monomers is sufficient to increase the chance of dimers forming, which could act as instigators of protofibril and fibril formation, resulting in increased plaque levels. As the process is slow and levels of Aβ are normally low, stochastic effects are important. Our model predicts that reducing the rate of dimerisation leads to a significant reduction in plaque levels and delays onset of plaque formation. The model was used to test the effect of an antibody mediated immunological response. Our results showed that plaque levels were reduced compared to conditions where antibodies are not present. Conclusion Our model supports the current thinking that levels of dimers are important in initiating the aggregation process. Although substantial knowledge exists regarding the process, no therapeutic intervention is on offer that reliably decreases disease burden in AD patients. Computer modelling could serve as one of a number of tools to examine both the validity of reliable biomarkers and aid the discovery of successful intervention strategies

    Altered motor, anxiety-related and attentional task performance at baseline associate with multiple gene copies of the vesicular acetylcholine transporter and related protein overexpression in ChAT::Cre+ rats

    Get PDF
    Abstract: Transgenic rodents expressing Cre recombinase cell specifically are used for exploring mechanisms regulating behavior, including those mediated by cholinergic signaling. However, it was recently reported that transgenic mice overexpressing a bacterial artificial chromosome containing choline acetyltransferase (ChAT) gene, for synthesizing the neurotransmitter acetylcholine, present with multiple vesicular acetylcholine transporter (VAChT) gene copies, resulting in altered cholinergic tone and accompanying behavioral abnormalities. Since ChAT::Cre+ rats, used increasingly for understanding the biological basis of CNS disorders, utilize the mouse ChAT promotor to control Cre recombinase expression, we assessed for similar genotypical and phenotypical differences in such rats compared to wild-type siblings. The rats were assessed for mouse VAChT copy number, VAChT protein expression levels and for sustained attention, response control and anxiety. Rats were also subjected to a contextual fear conditioning paradigm using an unconditional fear-inducing stimulus (electrical foot shocks), with blood samples taken at baseline, the fear acquisition phase and retention testing, for measuring blood plasma markers of hypothalamic–pituitary–adrenal gland (HPA)-axis activity. ChAT::Cre+ rats expressed multiple mouse VAChT gene copies, resulting in significantly higher VAChT protein expression, revealed anxiolytic behavior, hyperlocomotion and deficits in tasks requiring sustained attention. The HPA-axis was intact, with unaltered circulatory levels of acute stress-induced corticosterone, leptin and glucose. Our findings, therefore, reveal that in ChAT::Cre+ rats, VAChT overexpression associates with significant alterations of certain cognitive, motor and affective functions. Although highly useful as an experimental tool, it is essential to consider the potential effects of altered cholinergic transmission on baseline behavior in ChAT::Cre rats
    • …
    corecore