3 research outputs found

    Mice Lacking GABA(A) Receptor delta Subunit Have Altered Pharmaco-EEG Responses to Multiple Drugs

    Get PDF
    In the brain, extrasynaptically expressed ionotropic, delta subunit-containing gamma-aminobutyric acid A-type receptors (delta-GABA(A)Rs) have been implicated in drug effects at both neuronal and behavioral levels. These alterations are supposed to be caused via drug-induced modulation of receptor ionophores affecting chloride ion-mediated inhibitory tonic currents. Often, a transgenic mouse model genetically lacking the delta-GABA(A)Rs (delta-KO) has been used to study the roles of delta-GABA(A)Rs in brain functions, because a specific antagonist of the delta-GABA(A)Rs is still lacking. We have previously observed with these delta-KO mice that activation of delta-GABA(A)Rs is needed for morphine-induced conditioning of place preference, and others have suggested that delta-GABA(A)Rs act as targets selectively for low doses of ethanol. Furthermore, activation of these receptors via drug-mediated agonism induces a robust increase in the slow-wave frequency bands of electroencephalography (EEG). Here, we tested delta-KO mice (compared to littermate wild-type controls) for the pharmaco-EEG responses of a broad spectrum of pharmacologically different drug classes, including alcohol, opioids, stimulants, and psychedelics. Gaboxadol (THIP), a known superagonist of delta-GABA(A)Rs, was included as the positive control, and as expected, delta-KO mice produced a blunted pharmaco-EEG response to 6 mg/kg THIP. Pharmaco-EEGs showed notable differences between treatments but also differences between delta-KO mice and their wild-type littermates. Interestingly mephedrone (4-MMC, 5 mg/kg), an amphetamine-like stimulant, had reduced effects in the delta-KO mice. The responses to ethanol (1 g/kg), LSD (0.2 mg/kg), and morphine (20 mg/kg) were similar in delta-KO and wild-type mice. Since stimulants are not known to act on delta-GABA(A)Rs, our findings on pharmaco-EEG effects of 4-MMC suggest that delta-GABA(A)Rs are involved in the secondary indirect regulation of the brain rhythms after 4-MMC.Peer reviewe

    Conditioned Aversion and Neuroplasticity Induced by a Superagonist of Extrasynaptic GABAA Receptors: Correlation With Activation of the Oval BNST Neurons and CRF Mechanisms

    Get PDF
    tTHIP (gaboxadol), a superagonist of the delta subunit-containing extrasynaptic GABA(A) receptors, produces persistent neuroplasticity in dopamine (DA) neurons of the ventral tegmental area (VTA), similarly to rewarding drugs of abuse. However, unlike them THIP lacks abuse potential and induces conditioned place aversion in mice. The mechanism underlying the aversive effects of THIP remains elusive. Here, we show that mild aversive effects of THIP were detected 2 h after administration likely reflecting an anxiety-like state with increased corticosterone release and with central recruitment of corticotropin-releasing factor corticotropin-releasing factor receptor 1 (CRF1) receptors. A detailed immunohistochemical c-Fos expression mapping for THIP-activated brain areas revealed a correlation between the activation of CRF-expressing neurons in the oval nucleus of the bed nuclei of stria terminalis and THIP-induced aversive effects. In addition, the neuroplasticity of mesolimbic DA system (24 h after administration) and conditioned place aversion by THIP after four daily acute sessions were dependent on extrasynaptic GABAA receptors (abolished in delta-GABA(A) receptor knockout mice) and activation of the CRF1 receptors (abolished in wildtype mice by a CRF1 receptor antagonist). A selective THIP-induced activation of CRF-expressing neurons in the oval part of the bed nucleus of stria terminalis may constitute a novel mechanism for inducing plasticity in a population of VTA DA neurons and aversive behavioral states.Peer reviewe

    Acute Lysergic Acid Diethylamide Does Not Influence Reward-Driven Decision Making of C57BL/6 Mice in the Iowa Gambling Task

    Get PDF
    While interest in psychedelic drugs in the fields of psychiatry and neuroscience has re-emerged in recent last decades, the general understanding of the effects of these drugs remains deficient. In particular, there are gaps in knowledge on executive functions and goal-directed behaviors both in humans and in commonly used animal models. The effects of acute doses of psychedelic lysergic acid diethylamide (LSD) on reward-driven decision making were explored using the mouse version of the Iowa Gambling Task. A total of 15 mice were trained to perform in a touch-screen adaptation of the rodent version of the Iowa Gambling Task, after which single acute doses of LSD (0.025, 0.1, 0.2, 0.4 mg/kg), serotonin 2A receptor-selective agonist 25CN-NBOH (1.5 mg/kg), d-amphetamine (2.0 mg/kg), and saline were administered before the trial. 25CN-NBOH and the three lowest doses of LSD showed no statistically significant changes in option selection or in general functioning during the gambling task trials. The highest dose of LSD (0.4 mg/kg) significantly decreased premature responding and increased the omission rate, but had no effect on option selection in comparison with the saline control. Amphetamine significantly decreased the correct responses and premature responding while increasing the omission rate. In conclusion, mice can perform previously learned, reward-driven decision-making tasks while under the acute influence of LSD at a commonly used dose range.While interest in psychedelic drugs in the fields of psychiatry and neuroscience has re-emerged in recent last decades, the general understanding of the effects of these drugs remains deficient. In particular, there are gaps in knowledge on executive functions and goal-directed behaviors both in humans and in commonly used animal models. The effects of acute doses of psychedelic lysergic acid diethylamide (LSD) on reward-driven decision making were explored using the mouse version of the Iowa Gambling Task. A total of 15 mice were trained to perform in a touch-screen adaptation of the rodent version of the Iowa Gambling Task, after which single acute doses of LSD (0.025, 0.1, 0.2, 0.4 mg/kg), serotonin 2A receptor-selective agonist 25CN-NBOH (1.5 mg/kg), d-amphetamine (2.0 mg/kg), and saline were administered before the trial. 25CN-NBOH and the three lowest doses of LSD showed no statistically significant changes in option selection or in general functioning during the gambling task trials. The highest dose of LSD (0.4 mg/kg) significantly decreased premature responding and increased the omission rate, but had no effect on option selection in comparison with the saline control. Amphetamine significantly decreased the correct responses and premature responding while increasing the omission rate. In conclusion, mice can perform previously learned, reward-driven decision-making tasks while under the acute influence of LSD at a commonly used dose range.Peer reviewe
    corecore