52 research outputs found

    Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides

    Get PDF
    The late-stage functionalization of indole- and tryptophan-containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy-bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy-bearing allyl moiety directly on the indole ring of tryptophan-containing peptides. This is the first report of late-stage indole modifications with this reactive group

    Structure-Guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases

    Get PDF
    Indole is a significant structural moiety and functionalization of the C−H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl moieties on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. The presented results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds

    Structure and Specificity of a Permissive Bacterial C-Prenyltransferase

    Get PDF
    This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug

    Herbimycins D-F, Ansamycin Analogues from \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-7-15

    Get PDF
    Bacterial strains belonging to the class actinomycetes were isolated from the soil near a thermal vent of the Ruth Mullins coal fire (Appalachian mountains of Eastern Kentucky). High resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles of metabolites from one of the isolates (Streptomyces sp. RM-7-15) revealed the presence of a unique set of metabolites ultimately determined to be herbimycins D-F (1–3). In addition, herbimycin A (4), dihydroherbimycin A (TAN 420E) (7), and the structurally distinct antibiotic bicycylomycin were isolated from the crude extract of Streptomyces sp. RM-7-15. Herbimycins A, D-F (1–3) displayed comparable binding affinities to the Hsp90α. While the new analogues were found to be inactive in cancer cell cytotoxicity and antimicrobial assays, they may offer new insights in the context of non-toxic ansamycin-based Hsp90 inhibitors for the treatment of neurodegenerative disease

    Structure and Specificity of a Permissive Bacterial C-prenyltransferase

    Get PDF
    This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug

    Structure and Function of a Dual Reductase–Dehydratase Enzyme System Involved in p-Terphenyl Biosynthesis

    Get PDF
    We report the identification of the ter gene cluster responsible for the formation of the p-terphenyl derivatives terfestatins B and C and echoside B from the Appalachian Streptomyces strain RM-5-8. We characterize the function of TerB/C, catalysts that work together as a dual enzyme system in the biosynthesis of natural terphenyls. TerB acts as a reductase and TerC as a dehydratase to enable the conversion of polyporic acid to a terphenyl triol intermediate. X-ray crystallography of the apo and substrate-bound forms for both enzymes provides additional mechanistic insights. Validation of the TerC structural model via mutagenesis highlights a critical role of arginine 143 and aspartate 173 in catalysis. Cumulatively, this work highlights a set of enzymes acting in harmony to control and direct reactive intermediates and advances fundamental understanding of the previously unresolved early steps in terphenyl biosynthesis

    The Native Production of the Sesquiterpene Isopterocarpolone by \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14-6

    Get PDF
    We report the production, isolation and structure elucidation of the sesquiterpene isopterocarpolone from an Appalachian isolate Streptomyces species RM-14-6. While isopterocarpolone was previously put forth as a putative plant metabolite, this study highlights the first native bacterial production of isopterocarpolone and the first full characterisation of isopterocarpolone using 1D and 2D NMR spectroscopy and HR-ESI mass spectrometry. Considering the biosynthesis of closely related metabolites (geosmin or 5-epiaristolochene), the structure of isopterocarpolone also suggests the potential participation of one or more unique enzymatic transformations. In this context, this work also sets the stage for the elucidation of potentially novel bacterial biosynthetic machinery

    Complex Microbiome Underlying Secondary and Primary Metabolism in the Tunicate-\u3cem\u3eProchloron\u3c/em\u3e Symbiosis

    Get PDF
    The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules

    Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated \u3cem\u3eStreptomyces\u3c/em\u3e

    Get PDF
    We report the isolation and characterization of three new nybomycins (nybomycins B–D, 1–3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; β-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4β]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6–8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1–9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway

    Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14- 6

    Get PDF
    The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6–8] and 11 previously reported bacterial metabolites (1, 3, 9–12a, and 14–18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores
    • …
    corecore