28 research outputs found

    How common are Earth-Moon planetary systems?

    Get PDF
    The Earth's comparatively massive moon, formed via a giant impact on the proto-Earth, has played an important role in the development of life on our planet. Here we study how frequently Earth-Moon planetary systems occur. We derive limits on the collision parameters that may guarantee the formation of a circumplanetary disk after a protoplanet collision that could form a satellite. Based on a large set of simulations, we observe potential moon forming impacts and conclude that giant impacts with the required energy and orbital parameters for producing a binary planetary system occur frequently with more than one in ten terrestrial planets hosting a massive moo

    Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna

    Get PDF
    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q10 value, responded non-linearly with C:P, with Q10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality

    How common are Earth-Moon planetary systems?

    No full text

    Datenbasierte QualitÀtsregelung

    No full text

    Exploiting Smart Meter Water Consumption Measurements for Human Activity Event Recognition

    No full text
    Human activity event recognition (HAER) within a residence is a topic of significant interest in the field of ambient assisted living (AAL). Commonly, various sensors are installed within a residence to enable the monitoring of people. This work presents a new approach for HAER within a residence by (re-)using measurements from commercial smart water meters. Our approach is based on the assumption that changes in water flow within a residence, specifically the transition from no flow to flow above a certain threshold, indicate human activity. Using a separate, labeled evaluation data set from three households that was collected under controlled/laboratory-like conditions, we assess the performance of our HAER method. Our results showed that the approach has a high precision (0.86) and recall (1.00). Within this work, we further recorded a new open data set of water consumption data in 17 German households with a median sample rate of 0.083ÂŻ Hz to demonstrate that water flow data are sufficient to detect activity events within a regular daily routine. Overall, this article demonstrates that smart water meter data can be effectively used for HAER within a residence
    corecore