18 research outputs found

    Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha

    Get PDF
    A phase I/II study was conducted to test the feasibility and safety of the adoptive transfer of tumor-reactive T cells and daily injections of interferon-alpha (IFNα) in metastatic melanoma patients with progressive disease. Autologous melanoma cell lines were established to generate tumor-specific T cells by autologous mixed lymphocyte tumor cell cultures using peripheral blood lymphocytes. Ten patients were treated with on average 259 (range 38–474) million T cells per infusion to a maximum of six infusions, and clinical response was evaluated according to the response evaluation criteria in solid tumors (RECIST). Five patients showed clinical benefit from this treatment, including one complete regression, one partial response, and three patients with stable disease. No treatment-related serious adverse events were observed, except for the appearance of necrotic-like fingertips in one patient. An IFNα-related transient leucopenia was detected in 6 patients, including all responders. One responding patient displayed vitiligo. The infused T-cell batches consisted of tumor-reactive polyclonal CD8+ and/or CD4+ T cells. Clinical reactivity correlated with the functional properties of the infused tumor-specific T cells, including their in vitro expansion rate and the secretion of mainly Th1 cytokines as opposed to Th2 cytokines. Our study shows that relatively low doses of T cells and low-dose IFNα can lead to successful treatment of metastatic melanoma and reveals a number of parameters potentially associated with this success

    Blood-based kinase activity profiling: A potential predictor of response to immune checkpoint inhibition in metastatic cancer

    Get PDF
    Background Many cancer patients do not obtain clinical benefit from immune checkpoint inhibition. Checkpoint blockade targets T cells, suggesting that tyrosine kinase activity profiling of baseline peripheral blood mononuclear cells may predict clinical outcome. Methods Here a total of 160 patients with advanced melanoma or non-small-cell lung cancer (NSCLC), treated with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed cell death 1 (anti-PD-1), were divided into five discovery and cross-validation cohorts. The kinase activity profile was generated by analyzing phosphorylation of peripheral blood mononuclear cell lysates in a microarray comprising of 144 peptides derived from sites that are substrates for protein tyrosine kinases. Binary grouping into patients with or without clinical benefit was based on Response Evaluation Criteria in Solid Tumors V.1.1. Predictive models were trained using partial least square discriminant analysis (PLS-DA), performance of the models was evaluated by estimating the correct classification rate (CCR) using cross-validation. Results The kinase phosphorylation signatures segregated responders from non-responders by differences in canonical pathways governing T-cell migration, infiltration and co-stimulation. PLS-DA resulted in a CCR of 100% and 93% in the anti-CTLA-4 and anti-PD1 melanoma discovery cohorts, respectively. Cross-validation cohorts to estimate the accuracy of the predictive models showed CCRs of 83% for anti-CTLA-

    The Potential and Challenges of Exploiting the Vast But Dynamic Neoepitope Landscape for Immunotherapy

    No full text
    Somatic non-synonymous mutations in the DNA of tumor cells may result in the presentation of tumor-specific peptides to T cells. The recognition of these so-called neoepitopes now has been firmly linked to the clinical success of checkpoint blockade and adoptive T cell therapy. Following proof-of-principle studies in preclinical models there was a surge of strategies to identify and exploit genetically defined clonally expressed neoepitopes. These approaches assume that neoepitope availability remains stable during tumor progression but tumor genetics has taught us otherwise. Under the pressure of the immune system, neoepitope expression dynamically evolves rendering neoepitope specific T cells ineffective. This implies that the immunotherapeutic strategy applied should be flexible in order to cope with these changes and/or aiming at a broad range of epitopes to prevent the development of escape variants. Here, we will address the heterogeneous and dynamic expression of neoepitopes and describe our perspective and demonstrate possibilities how to further exploit the clinical potential of the neoepitope repertoire

    Phase I/II study protocol to assess safety and efficacy of adoptive cell therapy with anti-PD-1 plus low-dose pegylated-interferon-alpha in patients with metastatic melanoma refractory to standard of care treatments: the ACTME trial

    No full text
    Introduction Treatment with anti-PD-1 immunotherapy does not lead to long-lasting clinical responses in approximately 60% of patients with metastatic melanoma. These refractory patients, however, can still respond to treatment with tumour infiltrating lymphocytes (TIL) and interferon-alpha (IFNa). A combination of TIL, pegylated-interferon-alpha (PEG-IFNa) and anti-PD-1 is expected to provide a safe, feasible and effective therapy for patients with metastatic melanoma, who are refractory to standard of care treatment options.Methods and analysis Patients are treated in two phases. In phase I, the safety of the combination TIL and anti-PD-1 is assessed (cohort 1) according to CTCAE 4.03 criteria. Subsequently, the safety of cotreatment with PEG-IFNa is tested in cohort 2. The efficacy will be evaluated in the second phase of the trial. Efficacy is evaluated according to RECIST 1.1 and immune-related response criteria. Clinical and immunological parameters will be evaluated for their relation with clinical responsiveness.Ethics and dissemination Ethical approval of the trial was obtained from the Central Committee on Research Involving Human Subjects in the Netherlands. The trial results will be shared with the scientific community at (inter)national conferences and by publication in a peer-reviewed journal.Trial registration number NCT03638375; Pre-results

    CD103 and CD39 coexpression identifies neoantigen-specific cytotoxic T cells in colorectal cancers with low mutation burden.

    No full text
    Background: Expression of CD103 and CD39 has been found to pinpoint tumor-reactive CD8+ T cells in a variety of solid cancers. We aimed to investigate whether these markers specifically identify neoantigen-specific T cells in colorectal cancers (CRCs) with low mutation burden. Experimental design: Whole-exome and RNA sequencing of 11 mismatch repair-proficient (MMR-proficient) CRCs and corresponding healthy tissues were performed to determine the presence of putative neoantigens. In parallel, tumor-infiltrating lymphocytes (TILs) were cultured from the tumor fragments and, in parallel, CD8+ T cells were flow-sorted from their respective tumor digests based on single or combined expression of CD103 and CD39. Each subset was expanded and subsequently interrogated for neoantigen-directed reactivity with synthetic peptides. Neoantigen-directed reactivity was determined by flow cytometric analyses of T cell activation markers and ELISA-based detection of IFN-γ and granzyme B release. Additionally, imaging mass cytometry was applied to investigate the localization of CD103+CD39+ cytotoxic T cells in tumors. Results: Neoantigen-directed reactivity was only encountered in bulk TIL populations and CD103+CD39+ (double positive, DP) CD8+ T cell subsets but never in double-negative or single-positive subsets. Neoantigen-reactivity detected in bulk TIL but not in DP CD8+ T cells could be attributed to CD4+ T cells. CD8+ T cells that were located in direct contact with cancer cells in tumor tissues were enriched for CD103 and CD39 expression. Conclusion: Coexpression of CD103 and CD39 is characteristic of neoantigen-specific CD8+ T cells in MMR-proficient CRCs with low mutation burden. The exploitation of these subsets in the context of adoptive T cell transfer or engineered T cell receptor therapies is a promising avenue to extend the benefits of immunotherapy to an increasing number of CRC patients

    Neoantigen landscape dynamics during human melanoma-T cell interactions

    No full text
    Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy(1-7). Therefore, strategies to selectively enhance T-cell reactivity against genetically defined neoantigens(1,8-11) are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens(12,13). However, whether the T-cell-recognized neoantigen repertoire in human cancers is constant over time is unclear. Here we analyse the stability of neoantigen-specific T-cell responses and the antigens they recognize in two patients with stage IV melanoma treated by adoptive T-cell transfer. The T-cell-recognized neoantigens can be selectively lost from the tumour cell population, either by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer cells and T cells, which suggest that T cells mediate neoantigen immunoediting, and indicate that the therapeutic induction of broad neoantigen-specific T-cell responses should be used to avoid tumour resistanc
    corecore