305 research outputs found
Selection of an internet content filtering solution using the analytic hierarchy process
This talk describes the selection of an Internet Content Filtering solution suitable for the specific requirements of the Waikato Institute of Technology (Wintec). Product data was collected from a variety of sources including: vendor product datasheets, industry benchmark tests, the experiences of other institutions and the academic literature. The available solutions were compared using the Analytic Hierarchy Process (Saaty 1980), a multicriteria decision support tool, using the above data and priority weightings determined for each criterion
Nonequilibrium fluctuation dissipation relations of interacting Brownian particles driven by shear
We present a detailed analysis of the fluctuation dissipation theorem (FDT)
close to the glass transition in colloidal suspensions under steady shear using
mode coupling approximations. Starting point is the many-particle Smoluchowski
equation. Under shear, detailed balance is broken and the response functions in
the stationary state are smaller at long times than estimated from the
equilibrium FDT. An asymptotically constant relation connects response and
fluctuations during the shear driven decay, restoring the form of the FDT with,
however, a ratio different from the equilibrium one. At short times, the
equilibrium FDT holds. We follow two independent approaches whose results are
in qualitative agreement. To discuss the derived fluctuation dissipation
ratios, we show an exact reformulation of the susceptibility which contains not
the full Smoluchowski operator as in equilibrium, but only its well defined
Hermitian part. This Hermitian part can be interpreted as governing the
dynamics in the frame comoving with the probability current. We present a
simple toy model which illustrates the FDT violation in the sheared colloidal
system.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Availability of the Colchester coal for mining in northern and western Illinois
Includes bibliographical references (p. 17-19).This report is the fourth in a series to assess the availability of coal resources for future mining in Illinois.Coal resource classification system. -- Sources of data, limitations and mapping procedures. -- Geology and mining: Colchester coal: floor and roof stratigraphy. -- Coal quality. -- Quadrangle studies
The proximity of underground mines to urban and developed lands in Illinois
Includes bibliographical references (p. 12)
Recommended from our members
Graduated embodiment for sophisticated agent evolution and optimization.
We summarize the results of a project to develop evolutionary computing methods for the design of behaviors of embodied agents in the form of autonomous vehicles. We conceived and implemented a strategy called graduated embodiment. This method allows high-level behavior algorithms to be developed using genetic programming methods in a low-fidelity, disembodied modeling environment for migration to high-fidelity, complex embodied applications. This project applies our methods to the problem domain of robot navigation using adaptive waypoints, which allow navigation behaviors to be ported among autonomous mobile robots with different degrees of embodiment, using incremental adaptation and staged optimization. Our approach to biomimetic behavior engineering is a hybrid of human design and artificial evolution, with the application of evolutionary computing in stages to preserve building blocks and limit search space. The methods and tools developed for this project are directly applicable to other agent-based modeling needs, including climate-related conflict analysis, multiplayer training methods, and market-based hypothesis evaluation
Delineation of the coalbed methane resources of Illinois
Illinois Department of Commerce and Economic OpportunityOpe
Analytical Results for a Hole in an Antiferromagnet
The Green's function for a hole moving in an antiferromagnet is derived
analytically in the long-wavelength limit. We find that the infrared divergence
is eliminated in two and higher dimensions so that the quasiparticle weight is
finite. Our results also suggest that the hole motion is polaronic in nature
with a bandwidth proportional to ( is a constant).
The connection of the long-wavelength approximation to the first-order
approximation in the cumulant expansion is also clarified.Comment: 12 papes, 2 figures available upon request, revte
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Recommended from our members
The Arctic as a test case for an assessment of climate impacts on national security.
The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine the latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with outside organizations. Because changes in the Arctic environment are happening so rapidly, a successful program will be one that can adapt very quickly to new information as it becomes available, and can provide decision makers with projections on the 1-5 year time scale over which the most disruptive, high-consequence changes are likely to occur. The greatest short-term impact would be to initiate exploratory simulations to discover new emergent and robust phenomena associated with one or more of the following changing systems: Arctic hydrological cycle, sea ice extent, ocean and atmospheric circulation, permafrost deterioration, carbon mobilization, Greenland ice sheet stability, and coastal erosion. Sandia can also contribute to new technology solutions for improved observations in the Arctic, which is currently a data-sparse region. Sensitivity analyses have the potential to identify thresholds which would enable the collaborative development of 'early warning' sensor systems to seek predicted phenomena that might be precursory to major, high-consequence changes. Much of this work will require improved regional climate models and advanced computing capabilities. Socio-economic modeling tools can help define human and national security consequences. Formal uncertainty quantification must be an integral part of any results that emerge from this work
- …