46 research outputs found

    A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization

    Get PDF
    Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato

    Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    Get PDF
    Background: The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change.\ud \ud Methodology/Principal Findings: We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season.\ud \ud Conclusions/Significance: Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change
    corecore