5 research outputs found

    Synthesis and electrochemical performance of solid solution of layered nanostructured LiCo₁ˍₓ Niₓ O₂ (х 0.0, 0.1, ...,0.9) / Kelimah Anak Elong

    Get PDF
    Layered compounds are being investigated extensively due to their high theoretical specific capacities and relatively good cyclability. Lithium cobalt oxide (LiCoO₂) is an excellent cathode material but expensive and not abundant in nature. LiNiO₂, however, is unstable and do not exhibit good electrochemical properties. Substitution of nickel with cobalt may minimize the cobalt content and may reduce production cost. In this work, layered LiCo₁ˍₓ Niₓ O₂ (х 0.0, 0.1, ...,0.9) via a novel self-propagating combustion synthesis and its electrochemical properties are investigated. Simultaneous Thermogravimetric Analysis (STA), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM) were used to characterize all the materials. The characterization of all samples shows pure and single phase layered hexagonal structured materials obtained at 700 °C for 24 h with a polyhedral like morphology

    Annealing effect on structural and electrochemical performance of Ti-doped LiNi1/3Mn1/3Co1/3O2 cathode materials

    Get PDF
    NMC 111 cathode materials exhibit engaging properties in high energy density and low cost, making it great potential for the next generation of high-energy lithium-ion batteries. However, it still faces challenges such as fast capacity fade, especially at high C rates. Herein, we implement the novel Ti-doped cathode material, LiNi0.3Mn0.3Co0.3Ti0.1O2 (NMCT) synthesized via the combustion method. It was discovered that NMCT can effectively improve capacity delivery at high C rates. The T80 material demonstrated superior electrochemical annealed at 800 ˚C for 72 h, with an exceptional specific discharge capacity of 148.6 mAh g-1 and excellent cycle stability (capacity retention 96.8 %) after 30th cycles at 3 C. The results demonstrated that Ti-doped NMC had superior advantages for LiNi1/3Mn1/3Co1/3O2 (NMC 111) material at the optimum temperature of 800 °C for 72 h. It is one of the potential cathode materials for Li-ion batteries

    Photochemical Synthesis of Nanosheet Tin Di/Sulfide with Sunlight Response on Water Pollutant Degradation

    No full text
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS2-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS2-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS2-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS2-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response

    Ni-rich lithium nickel manganese cobalt oxide cathode materials: A review on the synthesis methods and their electrochemical performances

    No full text
    The demand for lithium-ion batteries (LIBs) has skyrocketed due to the fast-growing global electric vehicle (EV) market. The Ni-rich cathode materials are considered the most relevant next-generation positive-electrode materials for LIBs as they offer low cost and high energy density materials. However, by increasing Ni content in the cathode materials, the materials suffer from poor cycle ability, rate capability and thermal stability. Therefore, this review article focuses on recent advances in the controlled synthesis of lithium nickel manganese cobalt oxide (NMC). This work highlights the advantages and challenges associated with each synthesis method that has been used to produce Ni-rich materials. The crystallography and morphology obtained are discussed, as the performance of LIBs is highly dependent on these properties. To address the drawbacks of Ni-rich cathode materials, certain modifications such as ion doping, and surface coating have been pursued. The correlation between the synthesized and modified NMC materials with their electrochemical performances is summarized. Several gaps, challenges and guidelines are elucidated here in order to provide insights for facilitating research in high-performance cathode for lithium-ion batteries. Factors that govern the formation of nickel-rich layered cathode such as pH, reaction and calcination temperatures have been outlined and discussed
    corecore