47 research outputs found

    Inhibition of the NFAT pathway alleviates amyloid β neurotoxicity in a mouse model of Alzheimer's disease

    Get PDF
    Amyloid β (Aβ) peptides, the main pathological species associated with Alzheimer’s disease (AD), disturb intracellular calcium homeostasis, which in turn activates the calcium-dependent phosphatase calcineurin (CaN). CaN activation induced by Aβ leads to pathological morphological changes in neurons, and overexpression of constitutively active calcineurin is sufficient to generate a similar phenotype, even without Aβ. Here, we tested the hypothesis that calcineurin mediates neurodegenerative effects via activation of the nuclear transcription factor of activated T-cells (NFAT). We found that both spine loss and dendritic branching simplification induced by Aβ exposure were mimicked by constitutively active NFAT, and abolished when NFAT activation was blocked using the genetically encoded inhibitor VIVIT. When VIVIT was specifically addressed to the nucleus, identical beneficial effects were observed, thus enforcing the role of NFAT transcriptional activity in Aβ-related neurotoxicity. In vivo, when VIVIT or its nuclear counterpart were overexpressed in a transgenic model of Alzheimer’s disease via a gene therapy approach, the spine loss and neuritic abnormalities observed in the vicinity of amyloid plaques were blocked. Overall, these results suggest that NFAT/calcineurin transcriptional cascades contribute to Aβ synaptotoxicity, and may provide a new specific set of pathways for neuroprotective strategies

    Investigations on air induced segregation of pharmaceutical powders and effect of material flow functions

    No full text
    For the pharmaceutical industry, powder segregation can occur in many processes such as blending and compression solid dose unit operations. Yet it is important that the high quality standards of drug product manufacture are maintained throughout the whole processes. Powder segregation has been identified by the pharmaceutical industry as a potential issue, and in some cases it may cause variability in tablet assay and uniformity throughout a compression run. Early studies suggested for certain Direct Compression (DC) products, the separation of Active Pharmaceutical Ingredient (API) from excipients could arise due to air-induced segregation of the powders discharging from an Intermediate Bulk Container (IBC) to the tablet press via a vertical chute. Segregation tests were carried out on trial powder blend materials supplied by GlaxoSmithKline (GSK), using a laboratory-scale air elutriation test facility at The Wolfson Centre. Particle size analysis of the virgin and segregated sub-samples clearly indicated that powder segregation occurred as a result of aerodynamic effects. Subsequent chemical assay results concurred with the particle size results. Flowability testing of the powder blends indicated them to be free-flowing materials; this in addition to the presence of large particle size differentials within the powder blends is the likely cause of the susceptibility to air-induced segregation

    Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9

    Get PDF
    The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern
    corecore