15 research outputs found
Phylogeny and functional diversity of halophilic microbial communities from a thalasso environment
The El-Rawda solar saltern, located in North Sinai, Egypt, is formed through the process of water evaporation from the Bradawil lagoon. This evaporation leads to the precipitation of gypsum, halite minerals, and salt flats, which subsequently cover the southern and eastern areas of the lagoon. This study employed the shotgun metagenomic approach, the illumine platform, and bioinformatic tools to investigate the taxonomic composition and functional diversity of halophilic microbial communities in solar saltern. The metagenomic reads obtained from the brine sample exhibited a greater count compared to those from the sediment sample. Notably, the brine sample was primarily characterized by an abundance of archaea, while the sediment sample displayed a dominant abundance of bacteria. Both samples exhibited a relatively low abundance of eukaryotes, while viruses were only found in the brine sample. Furthermore, the comparative analysis of functional pathways showed many important processes related to central metabolism and protein processing in brine and sediment samples. In brief, this research makes a valuable contribution to the understanding of very halophilic ecosystems in Egypt, providing insights into their microbial biodiversity and functional processes
A polishing the harmful effects of Broad Bean Mottle Virus infecting broad bean plants by enhancing the immunity using different potassium concentrations
Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production reductions. The lack of adequate and effective control methods involves implementing novel BBMV control strategies. Herein, we demonstrate the effect of different potassium concentrations (20, 40, and 60 mM) against BBMV in broad bean plants. Potassium could control BBMV infection in broad bean by inhibiting the virus. In addition, infection with BBMV caused a significant decrease in morphological criteria, SPDA, photosynthetic characteristics, phytohormones, and mineral content in broad bean leaves compared to control plants. The levels of reactive oxygen species (ROS) (hydrogen peroxide, hydroxyl radical, and oxygen anion) and ROS scavenging enzymes (catalase, superoxide dismutase, peroxidase, phenylaniline ammonia-lyase, chitinase, and 1,3 - glucanase) increased significantly in plants inoculated with BBMV alone or in the presence of K+. In addition, proline and phenolic compounds increased significantly after being infected with BBMV. In conclusion, treatment with a high potassium concentration (60 mM) alleviates the adverse effect of BBMV on broad bean plants by boosting secondary metabolites, phytohormones, and enzymatic antioxidants
Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids
Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the <i>Ginkgo biloba</i> Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV–visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV–visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51
Diversity and Distribution Characteristics of Viruses from Soda Lakes
Viruses are the most abundant living things and a source of genetic variation. Despite recent research, we know little about their biodiversity and geographic distribution. We used different bioinformatics tools, MG-RAST, genome detective web tools, and GenomeVx, to describe the first metagenomic examination of haloviruses in Wadi Al-Natrun. The discovered viromes had remarkably different taxonomic compositions. Most sequences were derived from double-stranded DNA viruses, especially from Myoviridae, Podoviridae, Siphoviridae, Herpesviridae, Bicaudaviridae, and Phycodnaviridae families; single-stranded DNA viruses, especially from the family Microviridae; and positive-strand RNA viruses, especially from the family Potyviridae. Additionally, our results showed that Myohalovirus chaoS9 has eight Contigs and is annotated to 18 proteins as follows: tail sheath protein, tco, nep, five uncharacterized proteins, HCO, major capsid protein, putative pro head protease protein, putative head assembly protein, CxxC motive protein, terl, HTH domain protein, and terS Exon 2. Additionally, Halorubrum phage CGphi46 has 19 proteins in the brine sample as follows: portal protein, 17 hypothetical proteins, major capsid protein, etc. This study reveals viral lineages, suggesting the Virus\u27s global dispersal more than other microorganisms. Our study clarifies how viral communities are connected and how the global environment changes
Antiviral activities of olive oil apigenin and taxifolin against SARS-CoV-2 RNA-dependent RNA polymerase (RdRP): In silico, pharmacokinetic, ADMET, and in-vitro approaches
AbstractA novel coronavirus strain called SARS-CoV-2 first appeared in China in December 2019. Natural products are significant sources of prospective and new antiviral medications, and new antiviral drug research has advanced significantly in recent years. The current study allows us to select specific components of olive oil that are thought to be anti-SARS-CoV-2 and assess their impact on SARS-CoV-2 in vitro. The 26 compounds of olive oil were obtained from the PubChem database and docked against the RdRP of SARS-CoV-2 (pdb id: 6XQB) by autodock vina 1 1 2 linux x86 software. Cytotoxicity and antiviral activity were measured by the MTT assay protocol (the crystal violet method). The findings revealed that the range of the olive oil compound’s molecular docking binding affinity score against the RdRP SARS-CoV-2 target was 5.9–18.2 kcal/mol. The best compound is apigenin since it has a low energy value of −18.2 kcal/mol, followed by taxifolin, which has an energy value of −14.2 kcal/mol. On the other hand, the molecule with the lowest energy is believed to be the good one. Additionally, Lipinski’s criteria and AD-MET analysis supported the created apigenin and taxifolin’s status as a secure pharmaceutical substance. Also, apigenin and taxifolin showed moderate antiviral effectiveness against SARS-CoV-2 in vitro, with SI values of 9.7 and 8.79, respectively, compared with olive oil’s crude SI value of 9.57. According to our results, we think that olive oil is an essential source of cutting-edge SARS-CoV-2 antiviral drugs, especially apigenin and taxifolin compounds
Foliar Application of Chitosan and Phosphorus Alleviate the <i>Potato virus Y</i>-Induced Resistance by Modulation of the Reactive Oxygen Species, Antioxidant Defense System Activity and Gene Expression in Potato
Viruses pose a serious threat to the sustainable production of economically important crops around the world. In the past 20 years, potato virus Y (PVY) emerged as a relatively new and very serious problem in potatoes, even though it is the oldest known plant virus. Multiple strains of the virus cause various symptoms on the leaves and tubers of potatoes, resulting in yield reduction and poor-quality tubers. Consequently, it would be very interesting to learn what causes systemic PVY resistance in plants. Natural compounds such as chitosan (CHT) and phosphorus have been developed as alternatives to chemical pesticides to manage crop diseases in recent years. In the current study, potato leaves were foliar-sprayed with chitosan and phosphorus to assess their ability to induce PVY resistance. Compared to untreated plants, the findings demonstrated a significant decrease in disease severity and PVY accumulation in plants for which CHT and P were applied. Every treatment includes significantly increased growth parameters, chlorophyll content, photosynthetic characteristics, osmoprotectants (glycine betaine, proline, and soluble sugar), non-enzymatic antioxidants (glutathione, phenols, and ascorbic acid), enzymatic antioxidants (peroxidase, superoxide dismutase, lipoxygenase, glutathione reductase, catalase, β-1,3 glucanase, and ascorbate peroxidase), phytohormones (gibberellic acid, indole acetic acid, jasmonic acid, and salicylic acid), and mineral content (phosphorus, nitrogen, and potassium), compared to infected plants. However, compared to PVY infection values, CHT and P treatments showed a significant decrease in malondialdehyde, DPPH, H2O2, O2, OH, and abscisic acid levels. In addition, increased expression levels of some regulatory defense genes, including superoxide dismutase (SOD), ascorbic acid peroxidase (APX), relative pathogenesis-related 1 basic (PR-1b), and relative phenylalanine ammonia-lyase (PAL), were found in all treated plants, compared to PVY-infected plants. Conclusion: Phosphorus is the most effective treatment for alleviating virus infections
Phenotypical changes of hematopoietic stem and progenitor cells in COVID-19 patients: Correlation with disease status
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play a crucial role in the context of viral infections and their associated diseases. The link between HSCs and HPCs and disease status in COVID-19 patients is largely unknown. This study aimed to monitor the kinetics and contributions of HSCs and HPCs in severe and non-severe COVID-19 patients and to evaluate their diagnostic performance in differentiating between healthy and COVID-19 patients as well as severe and non-severe cases. Peripheral blood (PB) samples were collected from 48 COVID-19 patients, 16 recovered, and 27 healthy controls and subjected to deep flow cytometric analysis to determine HSCs and progenitor cells. Their diagnostic value and correlation with C-reactive protein (CRP), D-dimer, and ferritin levels were determined. The percentages of HSCs and common myeloid progenitors (CMPs) declined significantly, while the percentage of multipotent progenitors (MPPs) increased significantly in COVID-19 patients. There were no significant differences in the percentages of megakaryocyte-erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs) between all groups. Severe COVID-19 patients had a significantly low percentage of HSCs, CMPs, and GMPs compared to non-severe cases. Contrarily, the levels of CRP, D-dimer, and ferritin increased significantly in severe COVID-19 patients. MPPs and CMPs showed excellent diagnostic performance in distinguishing COVID-19 patients from healthy controls and severe from non-severe COVID-19 patients, respectively. Collectively, our study indicated that hematopoietic stem and progenitor cells are significantly altered by COVID-19 and could be used as therapeutic targets and diagnostic biomarkers for severe COVID-19