3 research outputs found

    Polycyclic aromatic hydrocarbons in dust from the indoor environment of Qatar

    Get PDF
    Polyaromatic Hydrocarbons (PAHs) concentrations in dust trapped on air conditioning unit filters operating in residential and workplace locations in Doha, Qatar were sampled and measured. Fourteen samples were collected and their PAH congener profile were quantified using gas chromatography–mass spectrometry (GC-MS). The results showed that the medians of ΣPAH16, which include seven carcinogenic components (ΣPAH7), were 214.7 ng g− 1 and 129.2 ng g− 1 of dust respectively for the residential samples, and 224.4 ng g− 1 and 137.9 ng g− 1 respectively for dust samples collected in an office workplace environment. Among all samples, benzo (b) fluoranthene (BBF) and benzo (a) pyrene (BAP) were the dominant congeners in both the residential and workplace samples, representing 18.2% and 16.9% of the ΣPAH16, respectively. Factors of correlation were calculated for various PAHs, and showed that lighter molecular weight PAHs have a significant positive correlation with heavier congeners within the residential samples, while workplace samples showed a negative correlation with BAP, Indeno (1,2,3-cd) pyrene (IND), and Dibenz (a,h) anthracene (DBA). Benzo (a) pyrene equivalent (BAPe) was used to assess the risk of human exposure to PAH inhalation. BAPe estimates for residences sampled averaged 0.019 μg g− 1, with a maximum of 0.063 μg g− 1 of dust, while workplace estimates averaged at 0.056 μg g− 1 with a maximum of 0.148 μg g− 1. Source apportionment assessment indicated that most residential and workplace PAHs samples have a pyrogenic origin with few showing evidence of petrogenic origins. All quantified PAHs concentrations and estimated BAPe in Qatar indoor dust samples are well below reported values elsewhere in the world

    BTEX, nitrogen oxides, ammonia and ozone concentrations at traffic influenced and background urban sites in an arid environment

    No full text
    Spatial distribution of key air pollutants were studied in Doha, Qatar, over the course of two monitoring campaigns in early spring, 2016. Time-weighted averages of BTEX components (benzene, toluene, ethyl-benzene, (m+p)-xylene and o-xylene), as well as NO, NO2, ammonia and ozone were measured from February 29 to March 31 in two periods at 15 locations of the city concerning different types of environments such as background rural and suburban, as well as traffic emission influenced urban locations. Results show high variation of the concentration levels among the sampling locations. The average NOX concentration slightly exceeded the annual limit value (108 μg m−3 vs. 100 μg m−3), the exceedances were significant at locations highly influenced by traffic emission. Contrasting behavior was found for ozone concentration having the highest level at background locations (ranging from 36 to 71 μg m−3) and the lowest at the most polluted sites (12–30 μg m−3). BTEX concentrations were found slightly to be above the American and European levels, but far below the values reported from the MENA region. The average BTEX concentration was 15.3 μg m−3, peaking at 40.5 μg m−3 at the most polluted location. Average concentrations of benzene, toluene, ethyl-benzene, (m+p)-xylene and o-xylene were 1.5, 4.7, 2.0, 5.0 and 2.3 μg m−3 respectively. The average toluene to benzene ratio was 2.87, which confirms the traffic dominance of the emission. NO to NO2 ratio was used for the characterization of the photochemical age of the pollution and thus, indirectly the distance of the sources. The ratios ranged from 0.19 to 2.45. Despite the desert environment elevated average level of ammonia (17.6 μg m−3) was found. NH3 concentration was correlated with NOX that indicates same sources. Other hotspots like local animal market, as well as organic compost type fertilizer in a big public park were identified. These results indicate the dominance of vehicle emission in the formation of the city's air quality. Atmospheric modification of the components via photochemical reactions was found to be important.NPRP award (NPRP 8- 202-3-043) from the Qatar National Research Fund (a member of The Qatar Foundation
    corecore