4 research outputs found

    Sensitization of Cells Overexpressing Multidrug-Resistant Proteins by Pluronic P85

    Get PDF
    Purpose. This study evaluated the chemosensitizing effects of Pluronic P85 (P85) on cells expressing multidrug resistance-associated proteins, MRP1 and MRP2. Methods. Cell models included MRP1- and MRP2-transfected MDCKII cells as well as doxorubicin-selected COR-L23/R cells overexpressing MRP1. Effects of P85 on cellular accumulation and cytotoxicity of vinblastine and doxorubicin were determined. Mechanistic studies characterized the effects of P85 on ATP and reduced glutathione (GSH) intracellular levels as well as MRP ATPase and glutathione-S-transferase (GST) activities in these cells. Results. Considerable increases of vinblastine and doxorubicin accumulation in the cells overexpressing MRP1 and MRP2 in the presence of P85 were observed, although no statistically significant changes in drug accumulation in the parental cells were found. P85 treatment caused an inhibition of MRP ATPase activity. Furthermore, P85 induced ATP depletion in these cells similar to that previously reported for Pgp-overexpressing cells. In addition, reduction of GSH intracellular levels and decrease of GST activity were observed following P85 treatment. Finally, significant enhancement of cytotoxicity of vinblastine and doxorubicin by P85 in MRP-overexpressing cells was demonstrated. Conclusions. This study suggests that P85 can sensitize cells overexpressing MRP1 and MRP2, which could be useful for chemotherapy of cancers that display these resistant mechanisms

    Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis

    Get PDF
    Most potent antiretroviral drugs (e.g., HIV-1 protease inhibitors) poorly penetrate the blood-brain barrier. Brain distribution can be limited by the efflux transporter, P-glycoprotein (P-gp). The ability of a novel drug delivery system (block co-polymer P85) that inhibits P-gp, to increase the efficacy of antiretroviral drugs in brain was examined using a severe combined immunodeficiency (SCID) mouse model of HIV-1 encephalitis (HIVE). Severe combined immunodeficiency mice inoculated with HIV-1 infected human monocyte-derived macrophages (MDM) into the basal ganglia were treated with P85, antiretroviral therapy (ART) (zidovudine, lamivudine and nelfinavir (NEL)), or P85 and ART. Mice were killed on days 7 and 14, and brains were evaluated for levels of viral infection. Antiviral effects of NEL, P85, or their combination were evaluated in vitro using HIV-1 infected MDM and showed antiretroviral effects of P85 alone. In SCID mice injected with virus-infected MDM, the combination of ART-P85 and ART alone showed a significant decrease of HIV-1 p24 expressing MDM (25% and 33% of controls, respectively) at day 7 while P85 alone group was not different from control. At day 14, all treatment groups showed a significant decrease in percentage of HIV-1 infected MDM as compared with control. P85 alone and combined ART-P85 groups showed the most significant reduction in percentage of HIV-1 p24 expressing MDM (8% to 22% of control) that were superior to the ART alone group (38% of control). Our findings indicate major antiretroviral effects of P85 and enhanced in vivo efficacy of antiretroviral drugs when combined with P85 in a SCID mouse model of HIVE

    Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data

    No full text
    The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated
    corecore