10 research outputs found

    A Fuzzy-Multiagent Service Restoration Scheme for Distribution System With Distributed Generation

    No full text

    A Fuzzy-Multiagent Self-Healing Scheme for a Distribution System with Distributed Generations

    No full text

    Optimal operation of a hybrid-energy microgrid with energy storage system

    No full text
    In this paper, a day-ahead profit-maximizing energy management scheme for a grid-tied microgrid operation is proposed. The microgrid contains various types of distributed energy resources (DERs) and an inverter-interfaced battery-bank storage system. The average of day-ahead hourly forecasted data for loads, wind speed, and solar radiation are inputted into the framework of energy management (EMF). To optimize the microgrid performance, EMF determines the hourly dispatch of reactive and active power for each DER. Also, it specifies the discharging and charging times of the energy storage system and the onload tap changer position setting of the transformer connected to the main grid. The main aim is to maximize the revenue of microgrid meeting all technical limitations. The main grid can sell/buy reactive and active powers to/from the microgrid with a variable daily energy price of the market. A collective rule base-BAT algorithm is implemented as a solver of the energy management optimization problem for a grid-tided microgrid. Furthermore, the ability of the suggested EMF is proved in comparison with recent approaches

    A comprehensive review on wind power spillage:Reasons, minimization techniques, real applications, challenges, and future trends

    No full text
    Most countries tend to largely exploit renewable energy resources for economic and environmental reasons. In modern electrical networks, wind penetration has been tremendously increased. This phenomenon has triggered an accelerating advance in wind technology with huge industry investments. Nowadays, increasing wind penetration without endangering power system reliability and security becomes a serious issue. Due to the significant uncertainty and variation of wind power generation (WPG), increasing wind penetration levels leads to frequency variation, voltage instability, and exceeding the transmission capacity limitations. To override the aforementioned problems, it becomes crucial either to “spill” wind or add a new dispatchable generation and/or storage systems. Performing a new dispatch provides an additional regulation and load following services. Recently, a significant amount of wind power spillage (WPS) exists in practice especially with high penetration level of WPG. Actually, WPS signifies the amount of the unused WPG because of technical problems such as grid congestion and lack of spinning reserve as well as during lower demand periods. WPS greatly lower the capacity factor of the wind power plant and lower its value. Over the last decade, possible mitigation strategies to solve the WPS problem have been tackled and conducted. This paper presents a comprehensive literature review of the WPS problem and state-of-the-art solutions to minimize WPS without compromising the power system's stability and secure operation. Additionally, the real applications, challenges, and future trends in the WPS research area are explored.</p
    corecore