32 research outputs found

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement

    Full text link
    Interactive Machine Learning (IML) seeks to integrate human expertise into machine learning processes. However, most existing algorithms cannot be applied to Realworld Scenarios because their state spaces and/or action spaces are limited to discrete values. Furthermore, the interaction of all existing methods is restricted to deciding between multiple proposals. We therefore propose a novel framework based on Bayesian Optimization (BO). Interactive Bayesian Optimization (IBO) enables collaboration between machine learning algorithms and humans. This framework captures user preferences and provides an interface for users to shape the strategy by hand. Additionally, we've incorporated a new acquisition function, Preference Expected Improvement (PEI), to refine the system's efficiency using a probabilistic model of the user preferences. Our approach is geared towards ensuring that machines can benefit from human expertise, aiming for a more aligned and effective learning process. In the course of this work, we applied our method to simulations and in a real world task using a Franka Panda robot to show human-robot collaboration

    CR-VAE: Contrastive Regularization on Variational Autoencoders for Preventing Posterior Collapse

    Full text link
    The Variational Autoencoder (VAE) is known to suffer from the phenomenon of \textit{posterior collapse}, where the latent representations generated by the model become independent of the inputs. This leads to degenerated representations of the input, which is attributed to the limitations of the VAE's objective function. In this work, we propose a novel solution to this issue, the Contrastive Regularization for Variational Autoencoders (CR-VAE). The core of our approach is to augment the original VAE with a contrastive objective that maximizes the mutual information between the representations of similar visual inputs. This strategy ensures that the information flow between the input and its latent representation is maximized, effectively avoiding posterior collapse. We evaluate our method on a series of visual datasets and demonstrate, that CR-VAE outperforms state-of-the-art approaches in preventing posterior collapse

    Understanding why SLAM algorithms fail in modern indoor environments

    Full text link
    Simultaneous localization and mapping (SLAM) algorithms are essential for the autonomous navigation of mobile robots. With the increasing demand for autonomous systems, it is crucial to evaluate and compare the performance of these algorithms in real-world environments. In this paper, we provide an evaluation strategy and real-world datasets to test and evaluate SLAM algorithms in complex and challenging indoor environments. Further, we analysed state-of-the-art (SOTA) SLAM algorithms based on various metrics such as absolute trajectory error, scale drift, and map accuracy and consistency. Our results demonstrate that SOTA SLAM algorithms often fail in challenging environments, with dynamic objects, transparent and reflecting surfaces. We also found that successful loop closures had a significant impact on the algorithm's performance. These findings highlight the need for further research to improve the robustness of the algorithms in real-world scenarios

    Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations

    Full text link
    Sensor gloves are popular input devices for a large variety of applications including health monitoring, control of music instruments, learning sign language, dexterous computer interfaces, and tele-operating robot hands. Many commercial products as well as low-cost open source projects have been developed. We discuss here how low-cost (approx. 250 EUROs) sensor gloves with force feedback can be build, provide an open source software interface for Matlab and present first results in learning object manipulation skills through imitation learning on the humanoid robot iCub.Comment: 3 pages, 3 figures. Workshop paper of the International Conference on Robotics and Automation (ICRA 2015

    O2S: Open-source open shuttle

    Full text link
    Currently, commercially available intelligent transport robots that are capable of carrying up to 90kg of load can cost \5000orevenmore.Thismakesreal−worldexperimentationprohibitivelyexpensiveandlimitstheapplicabilityofsuchsystemstoeverydayhomeorindustrialtasks.Asidefromtheirhighcost,themajorityofcommerciallyavailableplatformsareeitherclosed−source,platform−specificorusedifficult−to−customizehardwareandfirmware.Inthiswork,wepresentalow−cost,open−sourceandmodularalternative,referredtohereinas"open−sourceopenshuttle(O2S)".O2Sutilizesoff−the−shelf(OTS)components,additivemanufacturingtechnologies,aluminiumprofiles,andaconsumerhoverboardwithhigh−torquebrushlessdirectcurrent(BLDC)motors.O2Sisfullycompatiblewiththerobotoperatingsystem(ROS),hasamaximumpayloadof90kg,andcostslessthan5000 or even more. This makes real-world experimentation prohibitively expensive and limits the applicability of such systems to everyday home or industrial tasks. Aside from their high cost, the majority of commercially available platforms are either closed-source, platform-specific or use difficult-to-customize hardware and firmware. In this work, we present a low-cost, open-source and modular alternative, referred to herein as "open-source open shuttle (O2S)". O2S utilizes off-the-shelf (OTS) components, additive manufacturing technologies, aluminium profiles, and a consumer hoverboard with high-torque brushless direct current (BLDC) motors. O2S is fully compatible with the robot operating system (ROS), has a maximum payload of 90kg, and costs less than 1500. Furthermore, O2S offers a simple yet robust framework for contextualizing simultaneous localization and mapping (SLAM) algorithms, an essential prerequisite for autonomous robot navigation. The robustness and performance of the O2S were validated through real-world and simulation experiments. All the design, construction and software files are freely available online under the GNU GPL v3 license at https://doi.org/10.17605/OSF.IO/K83X7. A descriptive video of O2S can be found at https://osf.io/v8tq2
    corecore