7 research outputs found

    Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triticale is adapted to a wide range of abiotic stress conditions, is an important high-quality feed stock and produces similar grain yield but more biomass compared to other crops. Modern genomic approaches aimed at enhancing breeding progress in cereals require high-quality genetic linkage maps. Consensus maps are genetic maps that are created by a joint analysis of the data from several segregating populations and different approaches are available for their construction. The phenomenon that alleles at a locus deviate from the Mendelian expectation has been defined as segregation distortion. The study of segregation distortion is of particular interest in doubled haploid (DH) populations due to the selection pressure exerted on the plants during the process of their establishment.</p> <p>Results</p> <p>The final consensus map, constructed out of six segregating populations derived from nine parental lines, incorporated 2555 DArT markers mapped to 2602 loci (1929 unique). The map spanned 2309.9 cM with an average number of 123.9 loci per chromosome and an average marker density of one unique locus every 1.2 cM. The R genome showed the highest marker coverage followed by the B genome and the A genome. In general, locus order was well maintained between the consensus linkage map and the component maps. However, we observed several groups of loci for which the colinearity was slightly uneven. Among the 2602 loci mapped on the consensus map, 886 showed distorted segregation in at least one of the individual mapping populations. In several DH populations derived by androgenesis, we found chromosomes (2B, 3B, 1R, 2R, 4R and 7R) containing regions where markers exhibited a distorted segregation pattern. In addition, we observed evidence for segregation distortion between pairs of loci caused either by a predominance of parental or recombinant genotypes.</p> <p>Conclusions</p> <p>We have constructed a reliable, high-density DArT marker consensus genetic linkage map as a basis for genomic approaches in triticale research and breeding, for example for multiple-line cross QTL mapping experiments. The results of our study exemplify the tremendous impact of different DH production techniques on allele frequencies and segregation distortion covering whole chromosomes.</p

    Genetic architecture of winter hardiness and frost tolerance in triticale.

    Get PDF
    Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm

    Histograms of the phenotypic values.

    No full text
    <p>Shown for (<b>a</b>) winter hardiness and (<b>b</b>) frost tolerance for the entire population (All) and for each of the four families (DH06, DH07, EAW74, EAW78). The arrowheads indicate the phenotypic values of the respective parents.</p

    QTL detected for winter hardiness and frost tolerance.

    No full text
    <p>Chromosome, position with support interval with a LOD fall off of 1.0 and proportion of genotypic variance explained by the QTL (<i>p<sub>G</sub></i> in %) in the entire population and in each of the families, and the summary for the three genomes.</p

    Results from QTL mapping.

    No full text
    <p>QTL LOD scores and QTL frequency distributions from fivefold cross-validation for the QTL detected for (<b>a</b>) winter hardiness and (<b>b</b>) frost tolerance. The arrowheads indicate the QTL detected with the full data set and the horizontal dashed line the significance threshold.</p
    corecore