3 research outputs found
Screening Cultivated Eggplant and Wild Relatives for Resistance to Bacterial Wilt (Ralstonia solanacearum)
[EN] Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.This research was funded by the Global Crop Diversity Trust] grant number [GS17011] and World Vegetable Center core funds. This work was undertaken as part of the initiative Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew UK and implemented in partnership with national and international genebanks and plant breeding institutes around the world. For further information, go to the project website: http://www.cwrdiversity.org/. This work has also been funded in part by World Vegetable Center core funds from Republic of China (Taiwan), UK aid, United States Agency for International Development (USAID), Australian Centre for International Agricultural Research (ACIAR), Germany, Thailand, Philippines, Korea, and Japan.Namisy, A.; Chen, J.; Prohens Tomás, J.; Metwally, E.; Elmahrouk, M.; Rakha, M. (2019). Screening Cultivated Eggplant and Wild Relatives for Resistance to Bacterial Wilt (Ralstonia solanacearum). Agriculture. 9(7):1-11. https://doi.org/10.3390/agriculture9070157S11197Genin, S., & Denny, T. P. (2012). Pathogenomics of theRalstonia solanacearumSpecies Complex. Annual Review of Phytopathology, 50(1), 67-89. doi:10.1146/annurev-phyto-081211-173000Huet, G. (2014). Breeding for resistances to Ralstonia solanacearum. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00715Peeters, N., Guidot, A., Vailleau, F., & Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology, 14(7), 651-662. doi:10.1111/mpp.12038Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., van Beuningen, A. R., & Janse, J. D. (1999). European Journal of Plant Pathology, 105(3), 307-315. doi:10.1023/a:1008795417575Swanson, J. K., Yao, J., Tans-Kersten, J., & Allen, C. (2005). Behavior of Ralstonia solanacearum Race 3 Biovar 2 During Latent and Active Infection of Geranium. Phytopathology®, 95(2), 136-143. doi:10.1094/phyto-95-0136Wicker, E., Lefeuvre, P., de Cambiaire, J.-C., Lemaire, C., Poussier, S., & Prior, P. (2011). Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. The ISME Journal, 6(5), 961-974. doi:10.1038/ismej.2011.160Lebeau, A., Daunay, M.-C., Frary, A., Palloix, A., Wang, J.-F., Dintinger, J., … Prior, P. (2011). Bacterial Wilt Resistance in Tomato, Pepper, and Eggplant: Genetic Resources Respond to Diverse Strains in the Ralstonia solanacearum Species Complex. Phytopathology®, 101(1), 154-165. doi:10.1094/phyto-02-10-0048Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., & Jones, J. B. (2005). Application of Acibenzolar-S-Methyl Enhances Host Resistance in Tomato Against Ralstonia solanacearum. Plant Disease, 89(9), 989-993. doi:10.1094/pd-89-0989Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., & Yamada, T. (2011). Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages. Applied and Environmental Microbiology, 77(12), 4155-4162. doi:10.1128/aem.02847-10Addy, H. S., Askora, A., Kawasaki, T., Fujie, M., & Yamada, T. (2012). Utilization of Filamentous Phage Ď•RSM3 to Control Bacterial Wilt Caused by Ralstonia solanacearum. Plant Disease, 96(8), 1204-1209. doi:10.1094/pdis-12-11-1023-reKeatinge, J. D. H., Lin, L.-J., Ebert, A. W., Chen, W. Y., Hughes, J. d’A., Luther, G. C., … Ravishankar, M. (2014). Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biological Agriculture & Horticulture, 30(4), 272-287. doi:10.1080/01448765.2014.964317MANSFIELD, J., GENIN, S., MAGORI, S., CITOVSKY, V., SRIARIYANUM, M., RONALD, P., … FOSTER, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. doi:10.1111/j.1364-3703.2012.00804.xGRIMAULT, V., ANAIS, G., & PRIOR, P. (1994). Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathology, 43(4), 663-668. doi:10.1111/j.1365-3059.1994.tb01604.xWeller, D. M. (1988). Biological Control of Soilborne Plant Pathogens in the Rhizosphere with Bacteria. Annual Review of Phytopathology, 26(1), 379-407. doi:10.1146/annurev.py.26.090188.002115Lemessa, F., & Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control, 42(3), 336-344. doi:10.1016/j.biocontrol.2007.05.014Cardoso, S. C., Soares, A. C. F., Brito, A. dos S., Santos, A. P. dos, Laranjeira, F. F., & Carvalho, L. A. de. (2012). Evaluation of tomato rootstocks and its use to control bacterial wilt disease. Semina: CiĂŞncias Agrárias, 33(2), 595-604. doi:10.5433/1679-0359.2012v33n2p595P. Raja, B. A. K., & P. Rabindro, A. K. P. (2017). Evaluation of Wilt Resistance of Wild Solanum Species through Grafting in Brinjal. International Journal of Current Microbiology and Applied Sciences, 6(9), 3464-3469. doi:10.20546/ijcmas.2017.609.425Bittner, R. J., Arellano, C., & Mila, A. L. (2016). Effect of temperature and resistance of tobacco cultivars to the progression of bacterial wilt, caused by Ralstonia solanacearum. Plant and Soil, 408(1-2), 299-310. doi:10.1007/s11104-016-2938-6Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030Hayward, A. C. (1964). Characteristics ofPseudomonas solanacearum. Journal of Applied Bacteriology, 27(2), 265-277. doi:10.1111/j.1365-2672.1964.tb04912.xCook, D. (1989). Genetic Diversity ofPseudomonas solanacearum: Detection of Restriction Fragment Length Polymorphisms with DNA Probes That Specify Virulence and the Hypersensitive Response. Molecular Plant-Microbe Interactions, 2(3), 113. doi:10.1094/mpmi-2-113He, L. Y. (1983). Characteristics of Strains ofPseudomonas solanacearumfrom China. Plant Disease, 67(12), 1357. doi:10.1094/pd-67-1357Kado, C. I. (1970). Selective Media for Isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, 60(6), 969. doi:10.1094/phyto-60-969Hanson, P. M., Wang, J.-F., Licardo, O., Mah, S. Y., Hartman, G. L., … Lin, Y.-C. (1996). Variable Reaction of Tomato Lines to Bacterial Wilt Evaluated at Several Locations in Southeast Asia. HortScience, 31(1), 143-146. doi:10.21273/hortsci.31.1.143Aslam, M. N., Mukhtar, T., Hussain, M. A., & Raheel, M. (2017). Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. Journal of Plant Diseases and Protection, 124(6), 585-590. doi:10.1007/s41348-017-0100-1. M. A. R., . M. A. R., . M. M. H., . M. A. S., & . A. S. M. H. M. (2002). Grafting Compatibility of Cultivated Eggplant Varieties with Wild Solanum Species. Pakistan Journal of Biological Sciences, 5(7), 755-757. doi:10.3923/pjbs.2002.755.757Plazas, M., Vilanova, S., Gramazio, P., RodrĂguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCĂŤA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936PRIOR, P., BART, S., LECLERCQ, S., DARRASSE, A., & ANAIS, G. (1996). Resistance to bacterial wilt in tomato as discerned by spread of
Pseudomonas
(
Burholderia
)
solanacearum
in the stem tissues. Plant Pathology, 45(4), 720-726. doi:10.1046/j.1365-3059.1996.d01-9.
Left Main Coronary Artery Revascularization in Patients with Impaired Renal Function: Percutaneous Coronary Intervention versus Coronary Artery Bypass Grafting
Introduction: The evidence about the optimal revascularization strategy in patients with left main coronary artery (LMCA) disease and impaired renal function is limited. Thus, we aimed to compare the outcomes of LMCA disease revascularization (percutaneous coronary intervention [PCI] vs. coronary artery bypass grafting [CABG]) in patients with and without impaired renal function. Methods: This retrospective cohort study included 2,138 patients recruited from 14 centers between 2015 and 2,019. We compared patients with impaired renal function who had PCI (n= 316) to those who had CABG (n = 121) and compared patients with normal renal function who had PCI (n = 906) to those who had CABG (n = 795). The study outcomes were in-hospital and follow-up major adverse cardiovascular and cerebrovascular events (MACCE). Results: Multivariable logistic regression analysis showed that the risk of in-hospital MACCE was significantly higher in CABG compared to PCI in patients with impaired renal function (odds ratio [OR]: 8.13 [95% CI: 4.19–15.76], p < 0.001) and normal renal function (OR: 2.59 [95% CI: 1.79–3.73]; p < 0.001). There were no differences in follow-up MACCE between CABG and PCI in patients with impaired renal function (HR: 1.14 [95% CI: 0.71–1.81], p = 0.585) and normal renal function (HR: 1.12 [0.90–1.39], p = 0.312). Conclusions: PCI could have an advantage over CABG in revascularization of LMCA disease in patients with impaired renal function regarding in-hospital MACCE. The follow-up MACCE was comparable between PCI and CABG in patients with impaired and normal renal function