6 research outputs found

    Leveraging Non-Targeted Metabolite Profiling via Statistical Genomics

    Get PDF
    <div><p>One of the challenges of systems biology is to integrate multiple sources of data in order to build a cohesive view of the system of study. Here we describe the mass spectrometry based profiling of maize kernels, a model system for genomic studies and a cornerstone of the agroeconomy. Using a network analysis, we can include 97.5% of the 8,710 features detected from 210 varieties into a single framework. More conservatively, 47.1% of compounds detected can be organized into a network with 48 distinct modules. Eigenvalues were calculated for each module and then used as inputs for genome-wide association studies. Nineteen modules returned significant results, illustrating the genetic control of biochemical networks within the maize kernel. Our approach leverages the correlations between the genome and metabolome to mutually enhance their annotation and thus enable biological interpretation. This method is applicable to any organism with sufficient bioinformatic resources.</p></div

    Module eigenvalues do not obscure the importance of single compounds.

    No full text
    <p>MEorange was estimated from 81 molecular features, one of which was identified to be tyramine. GWAS on MEorange identified 27 significant SNPs at the FDR-corrected p<0.05 threshold. GWAS on tyramine alone identified 7 SNPs in common (red circles) with MEorange.</p

    Genomics-assisted chemistry & chemistry-assisted genomics.

    No full text
    <p>This flow chart describes the process by which statistical genetics and genomics can enable metabolite profiling to have greater power and impact.</p

    Visualization of maize grain metabolome.

    No full text
    <p>This node and edge projection describes the grain metabolome observed in the methanolic extract from 210 inbred line varieties of maize. This network requires a minimum degree of connectivity between any two nodes (i.e. biochemical markers detected by mass spectrometry) that exceeds four standard deviations above the mean connectivity observed between detected markers. According to this threshold, 4,102 nodes are organized into 48 modules each represented by particular color. However, some modules have separated into multiple, distinct clusters as internal connectivity may fall beneath the 4 standard deviation cutoff, such that there are 101 objects in this projection.</p
    corecore