62 research outputs found

    Targeting Polo-like kinase 1 and TRAIL enhances apoptosis in non-small cell lung cancer

    Get PDF
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in cancer cells without causing damage to normal cells. However, some tumors are resistant to TRAIL monotherapy and clinical studies assessing targeted agents towards the TRAIL receptor have failed to show robust therapeutic activity. Evidence has shown that standard anti-mitotic drugs can induce synergistic apoptosis upon combination with TRAIL via cell cycle arrest. Polo like kinase-1 (PLK1) plays a critical role in different stages of cell cycle progression and mitosis. A number of investigations have demonstrated that PLK1 inhibition causes cell cycle arrest and mitotic catastrophe in non-small cell lung cancer (NSCLC), and we thus postulated that PLK1 inhibition could enhance TRAIL-induced apoptosis. We demonstrate that the combination of a TRAIL receptor agonist and a PLK1 inhibitor synergistically reduces cell viability, and strongly increases apoptosis in NSCLC cellular models. Consistent with our in vitro observations, this drug combination also significantly reduces tumor growth in vivo. Our data additionally reveal that G2/M cell cycle arrest and downregulation of Mcl-1 and signal transducer and activator of transcription 3 (STAT3) activity following PLK1 inhibition may contribute to the sensitization of TRAIL-induced apoptosis in NSCLC. Together, these data support the further exploration of combined TRAIL and PLK1 inhibition in the treatment of NSCLC

    Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts

    Get PDF
    Background: Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with F-18-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimorazole in vitro and in vivo. Methods: In vitro MTS cell proliferation assays (OACM5 1.C SC1, human EAC cell line) were performed under normoxic and hypoxic (< 1%) conditions: control (100 mu L PBS), nimorazole, irradiation (5, 10 or 20 Gy) with or without nimorazole. In vivo, subcutaneous xenografts were induced in nude mice (OACM5 1.C SC1). Treatment was given daily for 5 consecutive days: (A) control (600 mu l NaCl 0.9% intraperitoneally (IP)) (N = 5, n = 7), (B) RT (5 Gy/d) (N = 11, n = 20), (C) combination (nimorazole (200 mg/kg/d IP) 30 min before RT) (N = 13, n = 21). N = number of mice, n = number of tumors. F-18-FAZA PET/CT was performed before treatment and tumor to background (T/B) ratios were calculated. Relative tumor growth was calculated and tumor sections were examined histologically (hypoxia, proliferation). Results: A T/B= 3.59 on pre-treatment F-18-FAZA PET/CT was predictive for worse RT response (sensitivity 92.3%, specificity 71.4%). Radiation was less effective in hypoxic tumors (T/B = 3.59) compared to normoxic tumors (T/B < 3.59) (P = 0.0025). In vitro, pre-treatment with nimorazole significantly decreased hypoxic radioresistance (P < 0.01) while in vivo, nimorazole enhanced the efficacy of RT to suppress cancer cell proliferation in hypoxic tumor areas (Ki67, P = 0.064), but did not affect macroscopic tumor growth. Conclusions: Tumor tissue hypoxia as measured with F-18-FAZA PET/CT is predictive for RT response in an EAC xenograft model. The radiosensitizing effect of nimorazole was questionable and requires further investigation

    Preclinical activity of melflufen (J1) in ovarian cancer

    Get PDF
    Ovarian cancer carries a significant mortality. Since symptoms tend to be minimal, the disease is often diagnosed when peritoneal metastases are already present. The standard of care in advanced ovarian cancer consists of platinum-based chemotherapy combined with cytoreductive surgery. Unfortunately, even after optimal cytoreduction and adjuvant chemotherapy, most patients with stage III disease will develop a recurrence. Intraperitoneal administration of chemotherapy is an alternative treatment for patients with localized disease. The pharmacological and physiochemical properties of melflufen, a peptidase potentiated alkylator, raised the hypothesis that this drug could be useful in ovarian cancer and particularily against peritoneal carcinomatosis. In this study the preclinical effects of melflufen were investigated in different ovarian cancer models. Melflufen was active against ovarian cancer cell lines, primary cultures of patient-derived ovarian cancer cells, and inhibited the growth of subcutaneous A2780 ovarian cancer xenografts alone and when combined with gemcitabine or liposomal doxorubicin when administered intravenously. In addition, an intra- and subperitoneal xenograft model showed activity of intraperitoneal administered melflufen for peritoneal carcinomatosis, with minimal side effects and modest systemic exposure. In conclusion, results from this study support further investigations of melflufen for the treatment of peritoneal carcinomatosis from ovarian cancer, both for intravenous and intraperitoneal administration

    Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion

    Get PDF
    Cancer progression is characterized by a complex reciprocity between neoplastic epithelium and adjacent stromal cells. In ductal carcinoma in situ (DCIS) of the breast, both reduced stromal decorin expression and myxoid stroma are correlated with increased recurrence risk. In this study, we aimed to investigate paracrine regulation of expression of decorin and related extracellular matrix (ECM) proteins in cancerassociated fibroblasts (CAFs). Transforming growth factor-β1 (TGF-β1) was identified as a competent ECM modulator, as it reduced decorin and strongly enhanced versican, biglycan and type I collagen expression. Similar but less pronounced effects were observed when fibroblasts were treated with basic fibroblast growth factor (bFGF). Despite this concerted ECM modulation, TGF-β1 and bFGF differentially regulated alpha-smooth muscle actin (α-SMA) expression, which is often proposed as a CAFmarker. Cancer cell-derived secretomes induced versican and biglycan expression in fibroblasts. Immunohistochemistry on twenty DCIS specimens showed a trend toward periductal versican overexpression in DCIS with myxoid stroma. Cancer cell adhesion was inhibited by decorin, but not by CAF-derived matrices. Cancer cells presented significantly enhanced spreading when seeded on matrices derived from TGF-β1-treated CAF. Altogether these data indicate that preinvasive cancerous lesions might modulate the composition of surrounding stroma through TGF-β1 release to obtain an invasion-permissive microenvironment

    Localization and expression of nuclear factor of activated T-cells 5 in myoblasts exposed to pro-inflammatory cytokines or hyperosmolar stress and in biopsies from myositis patients

    Get PDF
    Aims: Regeneration in skeletal muscle relies on regulated myoblast migration and differentiation, in which the transcription factor nuclear factor of activated T-cells 5 (NFAT5) participates. Impaired muscle regeneration and chronic inflammation are prevalent in myositis. Little is known about the impact of inflammation on NFAT5 localization and expression in this group of diseases. The goal of this study was to investigate NFAT5 physiology in unaffected myoblasts exposed to cytokine or hyperosmolar stress and in myositis. Methods: NFAT5 intracellular localization and expression were studied in vitro using a cell culture model of myositis. Myoblasts were exposed to DMEM solutions enriched with pro-inflammatory cytokines IFN-gamma with IL-1 beta) or hyperosmolar DMEM obtained by NaCI supplementation. NFAT5 localization was visualized using immunohistochemistry (IHC) and Western blotting (WB) in fractionated cell lysates. NFAT5 expression was assessed by WB and RT-qPCR. In vivo localization and expression of NFAT5 were studied in muscle biopsies of patients diagnosed with polymyositis (n = 6), dermatomyositis (n = 10), inclusion body myositis (n = 11) and were compared to NFAT5 localization and expression in non-myopathic controls (n = 13). Muscle biopsies were studied by means of quantitative IHC and WB of total protein extracts. Results: In unaffected myoblasts, hyperosmolar stress ensues in NFAT5 nuclear translocation and increased NFAT5 mRNA and protein expression. In contrast, pro-inflammatory cytokines did not lead to NFAT5 nuclear translocation nor increased expression. Cytokines IL-1 beta with IFN-gamma induced colocalization of NFAT5 with histone deacetylase 6 (HDAC6), involved in cell motility. In muscle biopsies from dermatomyositis and polymyositis patients, NFAT5 colocalized with HDAC6, while in IBM, this was often absent. Conclusions: Our data suggest impaired NFAT5 localization and expression in unaffected myoblasts in response to inflammation. This disturbed myogenic NFAT5 physiology could possibly explain deleterious effects on muscle regeneration in myositis
    • …
    corecore