4,280 research outputs found

    A Precision Calculation of the Next-to-Leading Order Energy-Energy Correlation Function

    Get PDF
    The O(alpha_s^2) contribution to the Energy-Energy Correlation function (EEC) of e+e- -> hadrons is calculated to high precision and the results are shown to be larger than previously reported. The consistency with the leading logarithm approximation and the accurate cancellation of infrared singularities exhibited by the new calculation suggest that it is reliable. We offer evidence that the source of the disagreement with previous results lies in the regulation of double singularities.Comment: 6 pages, uuencoded LaTeX and one eps figure appended Complete paper as PostScript file (125 kB) available at: http://www.phys.washington.edu/~clay/eecpaper1/paper.htm

    Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes

    Get PDF
    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity

    Physics in the Real Universe: Time and Spacetime

    Get PDF
    The Block Universe idea, representing spacetime as a fixed whole, suggests the flow of time is an illusion: the entire universe just is, with no special meaning attached to the present time. This view is however based on time-reversible microphysical laws and does not represent macro-physical behaviour and the development of emergent complex systems, including life, which do indeed exist in the real universe. When these are taken into account, the unchanging block universe view of spacetime is best replaced by an evolving block universe which extends as time evolves, with the potential of the future continually becoming the certainty of the past. However this time evolution is not related to any preferred surfaces in spacetime; rather it is associated with the evolution of proper time along families of world linesComment: 28 pages, including 9 Figures. Major revision in response to referee comment

    Nuclear Effects on Heavy Boson Production at RHIC and LHC

    Get PDF
    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.Comment: 21 pages, 11 figure

    Probing the low transverse momentum domain of Z production with novel variables

    Full text link
    The measurement of the low transverse momentum region of vector boson production in Drell-Yan processes has long been invaluable to testing our knowledge of QCD dynamics both beyond fixed-order in perturbation theory as well as in the non-perturbative region. Recently the D\O\ collaboration have introduced novel variables which lead to improved measurements compared to the case of the standard QT variable. To complement this improvement on the experimental side, we develop here a complete phenomenological study dedicated in particular to the new \phi* variable. We compare our study, which contains the state-of-the-art next-to-next-to-leading resummation of large logarithms and a smooth matching to the full next-to-leading order result, to the experimental data and find excellent agreement over essentially the entire range of \phi*, even without direct inclusion of non-perturbative effects. We comment on our findings and on the potential for future studies to constrain non-perturbative behaviour.Comment: 20 pages, 7 figures. Version accepted for publication in JHEP. A figure with comparison to RESBOS has been adde

    Role of the nonperturbative input in QCD resummed Drell-Yan QTQ_T-distributions

    Get PDF
    We analyze the role of the nonperturbative input in the Collins, Soper, and Sterman (CSS)'s bb-space QCD resummation formalism for Drell-Yan transverse momentum (QTQ_T) distributions, and investigate the predictive power of the CSS formalism. We find that the predictive power of the CSS formalism has a strong dependence on the collision energy S\sqrt{S} in addition to its well-known Q2Q^2 dependence, and the S\sqrt{S} dependence improves the predictive power at collider energies. We show that a reliable extrapolation from perturbatively resummed bb-space distributions to the nonperturbative large bb region is necessary to ensure the correct QTQ_T distributions. By adding power corrections to the renormalization group equations in the CSS formalism, we derive a new extrapolation formalism. We demonstrate that at collider energies, the CSS resummation formalism plus our extrapolation has an excellent predictive power for WW and ZZ production at all transverse momenta QTQQ_T\le Q. We also show that the bb-space resummed QTQ_T distributions provide a good description of Drell-Yan data at fixed target energies.Comment: Latex, 43 pages including 15 figures; typos were correcte

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    Non-adiabatic-like accelerated expansion of the late universe in entropic cosmology

    Get PDF
    In `entropic cosmology', instead of a cosmological constant Λ\Lambda, an extra driving term is added to the Friedmann equation and the acceleration equation, taking into account the entropy and the temperature on the horizon of the universe. By means of the modified Friedmann and acceleration equations, we examine a non-adiabatic-like accelerated expansion of the universe in entropic cosmology. In this study, we consider a homogeneous, isotropic, and spatially flat universe, focusing on the single-fluid (single-component) dominated universe at late-times. To examine the properties of the late universe, we solve the modified Friedmann and acceleration equations, neglecting high-order corrections for the early universe. We derive the continuity (conservation) equation from the first law of thermodynamics, assuming non-adiabatic expansion caused by the entropy and temperature on the horizon. Using the continuity equation, we formulate the generalized Friedmann and acceleration equations, and propose a simple model. Through the luminosity distance, it is demonstrated that the simple model agrees well with both the observed accelerated expansion of the universe and a fine-tuned standard Λ\LambdaCDM (lambda cold dark matter) model. However, we find that the increase of the entropy for the simple model is likely uniform, while the increase of the entropy for the standard Λ\LambdaCDM model tends to be gradually slow especially after the present time. In other words, the simple model predicts that the present time is not a special time, unlike for the prediction of the standard Λ\LambdaCDM model.Comment: 16 pages, 6 figures, revised. Appendices and References were added and revise

    The Algorithmic Origins of Life

    Full text link
    Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.Comment: 13 pages, 1 tabl

    Transverse Momentum Distributions for Heavy Quark Pairs

    Full text link
    We study the transverse momentum distribution for a pairpair of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order αs3\alpha_s^3 QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all transverse momenta. Explicit results are presented for bbˉb\bar b pair production at the Fermilab Tevatron collider and for ccˉc\bar c pair production at fixed target energies.Comment: LaTeX (27 pages text, 8 figures not included, but available on request
    corecore