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In “entropic cosmology,” instead of a cosmological constant A, an extra driving term is added to the
Friedmann equation and the acceleration equation, taking into account the entropy and the temperature on
the horizon of the universe. By means of the modified Friedmann and acceleration equations, we examine
a non-adiabatic-like accelerated expansion of the universe in entropic cosmology. In this study, we
consider a homogeneous, isotropic, and spatially flat universe, focusing on the single-fluid- (single-
component-) dominated universe at late times. To examine the properties of the late universe, we solve the
modified Friedmann and acceleration equations, neglecting high-order corrections for the early universe.
We derive the continuity (conservation) equation from the first law of thermodynamics, assuming
nonadiabatic expansion caused by the entropy and temperature on the horizon. Using the continuity
equation, we formulate the generalized Friedmann and acceleration equations, and propose a simple
model. Through the luminosity distance, it is demonstrated that the simple model agrees well with both
the observed accelerated expansion of the Universe and a fine-tuned standard ACDM (lambda cold dark
matter) model. However, we find that the increase of the entropy for the simple model is likely uniform,
while the increase of the entropy for the standard ACDM model tends to become gradually slower,
especially after the present time. In other words, the simple model predicts that the present time is not a

special time, unlike for the prediction of the standard ACDM model.

DOI: 10.1103/PhysRevD.87.043531

L. INTRODUCTION

Numerous cosmological observations have implied a
new paradigm for the cosmic expansion history, i.e., an
accelerated expansion of the Universe [1-14]. To explain
the accelerated expansion, an additional energy component
called “dark energy” is usually added to both the
Friedmann equation and the Friedmann-Lemaitre accelera-
tion equation, where general relativity is assumed to be
correct. In particular, ACDM models, which assume cold
dark matter (CDM) and a cosmological constant A, have
been suggested as an elegant description of accelerated
expansion [15-21]. (For other models, see Refs. [17,21-23]
and references therein.)

Recently, Easson et al. [24,25] have proposed that an
extra driving term should be added to the Friedmann-
Lemaitre acceleration equation. The additional entropic-
force term can explain the accelerated expansion of the late
universe [24] and the inflation of the early universe [25],
without introducing new fields [26]. In the entopic-force
scenario, called “‘entropic cosmology,” the additional driv-
ing term is derived from the usually neglected surface
terms on the horizon of the universe in the gravitational
action, assuming that the horizon has an entropy and a
temperature [24]. (In fact, the entropy and temperature are
related to the Bekenstein entropy [27] and the Hawking
temperature [28] of black holes on an event horizon.) Since
then, many researchers have extensively examined
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entropic cosmology from various viewpoints [26,29-36].
(The possibility that the entropic force on the horizon can
explain the accelerating universe [24] should be distin-
guished from the idea that gravity itself is an entropic
force [37,38].)

In entropic cosmology, since the entropy on the horizon
is assumed, the entropy can increase during the evolution
of the universe. Therefore, it is possible to consider that the
evolution of the universe is a kind of nonadiabatic process,
unlike in standard cosmology, in which an adiabatic
(isentropic) expansion is assumed. Nevertheless, such a
non-adiabatic-like expansion of the universe has not yet
been extensively investigated in entropic cosmology and
has been considered in only a few studies [29-33].
Therefore, it is important to examine the non-adiabatic-
like (hereafter nonadiabatic) process, to acquire a deeper
understanding of entropic cosmology, especially from a
thermodynamics viewpoint. Also, after the discovery of
black hole thermodynamics [27,28], the entropy of the
universe was examined by many researchers [39-45]. In
particular, since the late 1990s, the entropy of the universe
has been extensively discussed in a universe undergoing
accelerated expansion [46-55]. However, evolution of the
entropy has not been studied in entropic cosmology,
although entropy plays an important role.

In this context, we examine a nonadiabatic expansion of
the universe and discuss the evolution of the entropy in
entropic cosmology. For this purpose, we derive the con-
tinuity (conservation) equation from the first law of ther-
modynamics, taking into account the nonadiabatic process
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caused by the entropy and the temperature on the horizon.
If the modified Friedmann and Friedmann-Lemaitre accel-
eration equations are used, the continuity equation can be
derived from the two equations without using the first law
of thermodynamics. This is because two of the three equa-
tions are independent [19]. However, in this study, we
derive the continuity equation from the first law of ther-
modynamics, since the first law is the fundamental conser-
vation law. Using the obtained continuity equation, we
formulate the generalized Friedmann and Friedmann-
Lemaitre acceleration equations. In addition, we propose
a simple model based on the formulation. It should be
noted that we do not discuss entropic inflation [25,30] in
the early universe, since we focus on the late universe
[24,56] to examine the fundamental properties of the
universe in entropic cosmology.

The present paper is organized as follows. In Sec. II, we
give a brief review of the two modified Friedmann equa-
tions in entropic cosmology. In this section, we examine
the properties of the single-fluid-dominated universe.
In Sec. III, we derive the modified continuity equation
from the first law of thermodynamics, assuming a non-
adiabatic expansion of the universe. We also discuss
generalized formulations of entropic cosmology and pro-
pose a simple model. In Sec. IV, we compare the simple
model with the observed supernova data and several
ACDM models. Finally, in Sec. V, we present our
conclusions.

II. MODIFIED FRIEDMANN EQUATIONS

Koivisto et al. [26] have summarized two modified
Friedmann equations to examine the entropic cosmology
proposed by Easson et al. [24,25]. In this study, we employ
the two modified Friedmann equations. We do not derive
the two modified Friedmann equations in the present
paper, since the theoretical derivation has been described
in Refs. [24,25]. In Sec. IT A, we first give a brief review of
the two modified Friedmann equations. In Secs. II B and
IIC, we examine the solutions and the properties of the
single-fluid-dominated universe in entropic cosmology.

A. Two modified Friedmann equations with additional
driving terms for entropic cosmology

We consider a homogeneous, isotropic, and spatially
flat universe, and examine the scale factor a(7) at time ¢
in the Friedmann-Lemaitre-Robertson-Walker metric.
In entropic cosmology, the two modified Friedmann
equations [26] are summarized as

and
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a( .
a0 H(t) + H(1)?
_ 4nG ) )
=~ U+3wp() + BHO)" + BHD), ()
where the Hubble parameter H(z) is defined by
_da/dt _a(t)
H(r) = a0 a) 3)

G and p(r) are the gravitational constant and the mass
density of cosmological fluids, respectively. Note that we
neglect high-order terms for quantum corrections, since we
focus on the late universe. In Eq. (2), w represents the
equation of state parameter for a generic component of
matter, which is given as

= PO
p(t)c*’

where ¢ and p(r) are the speed of light and the pressure of
cosmological fluids, respectively. For nonrelativistic mat-
ter (or the matter-dominated universe) and relativistic mat-
ter (or the radiation-dominated universe), w is 0 and 1/3,
respectively. In Egs. (1) and (2), the four coefficients «,
@,, B, and B, are dimensionless constants [26]. The H?
and H terms with the dimensionless constants correspond
to the additional driving terms, which take into account the
entropy and temperature on the horizon of the universe due
to the information holographically stored there [24]. In this
study, Egs. (1) and (2) are called the modified Friedmann
equation and the modified (Friedmann-Lemaitre) accelera-
tion equation, respectively. [Equation (1) corresponds to
energy conservation.]

Easson et al. [24] have derived the modified acceleration
equation, i.e., Eq. (2). In their paper, the dimensionless
constants were expected to be bounded by % =B, =1
and 0 = B, = %. Typical values for a better fitting were
B = % and B, = % [24]. Tt was argued that the extrinsic
curvature at the surface was likely to result in something
like &y = B; = 5 and a, = B, = 7= [25,26]. Of course,
it is difficult to derive four unknown dimensionless con-
stants from first principles.

We now examine the two modified Friedmann equa-
tions. Coupling [(1 + 3w)X Eq. (1)] with [2X Eq. (2)]
and rearranging, we obtain

31 +w) —a;(1+3w) —2B,

T — 2

“4)

The above equation can be rewritten as

. dH
H="—=—-C/H 6
=G (6)

where

¢ = (7)
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From Eq. (6), (dH/da)a is calculated as

dH\  (dH\dt a1
(%)a_<dt>da“_(C1H)a CHg

= —CH. (8)
Accordingly, Eq. (8) is arranged as
o~ ©)
where N is defined by
N =1Ina, and therefore dN = %. (10)

As discussed in Ref. [26], the two modified Friedmann
equations can be arranged as a simple equation, Eq. (9). In
the next subsection, we solve Eq. (9), assuming a single-
fluid-dominated universe.

B. Solutions for the modified Friedmann equations
in the single-fluid-dominated universe

We can solve Eq. (9) analytically, when C; is constant.
In fact, as shown in Eq. (7), C; is constant when «;, B8;, and
w are constant values. (Here «; represents «; and «a,, and
B; represents B and 3,.) Therefore, to solve Eq. (9), we
assume that «; and B; are constant. In addition, for a
constant w, we assume the single-fluid-dominated uni-
verse. Concretely speaking, w is 0 and 1/3 for the matter-
and radiation-dominated universes, respectively.

When C; is constant, Eq. (9) can be integrated as

dFH= —jCldN. (11)
This solution is given by
InH=—-C,N+D'=—C;lna+ D, (12)
and therefore we find
H = Da “, (13)

where D’ and D are integral constants. Dividing Eq. (13)
by Hy, = Daac‘, we have

H ( a )7C1
H, ao '

where H, and a, are the present values of the Hubble
parameter and the scale factor. We obtain the above simple
solution, since we assume the single-fluid-dominated uni-
verse and neglect high-order terms for quantum corrections.

Equation (14) indicates that C; is an important parameter
for discussing the universe in the present entropic cosmol-
ogy. We can determine C; from Eq. (7). For example, if
a; = B; = 0, then C for the radiation-dominated universe
(w=1/3)is C;, = 2, while C; for the matter-dominated
universe (w = 0) is Cy,, = 3/2. When a; = B; = 0, the
two modified Friedmann equations are the standard

(14)
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Friedmann and acceleration equations, respectively
[17-21]. Accordingly, Eq. (14) for C,, =2 and C,,, =
3/2 agrees with the standard formula for the radiation-
and matter-dominated universes, respectively. Note that
the universe for C; = C;, =0 corresponds to the
A-dominated universe, as discussed later.

C. Properties of the single-fluid-dominated universe
in entropic cosmology

To observe the properties of the single-fluid-dominated
universe, we examine three properties: the scale factor
(in Sec. IIC 1), the luminosity distance (in Sec. IIC?2),
and the entropy on the Hubble horizon (in Sec. IIC 3). In
this subsection, we consider C; as a non-negative free
parameter.

1. Scale factor a

The first important property we examine is the scale
factor a(z). To this end, Eq. (14) is arranged as

H=a©%, (15)
where H and a are defined by
- H
A= and a=2. (16)
H ap
Multiplying Eq. (15) by a, we obtain
- 1 da
Hi=—-"—=a6"% 17
“THyar 17
where H a is calculated as
da H a ad/aa a ao%(;—o) 1 da
G=— =22 _ =7 __“dta __ - 7
HO ago HO ag Hoao Hoao HO dl
(18)

Integrating Eq. (17) and replacing a by a/ay, we finally
have

izrqm% €0

4o exp[Hy(t — tp)] (C; = 0),

where 1, represents the present time. Note that the integral
constants are calculated from a@ = 1 at t = t;, where ¢, is
set to be 1/(C,H,). Typical results are given by

V2H,t (C,=0C,,=2)

a _ 2/3 _ _

a (%Hof) (Cy =Cy,, =3/2).
exp[Hy(t — 19)] (C; =Cjp =0)

(20)

When «; = B; = 0, the above three results correspond to
the scale factor for the radiation-, matter-, and A-dominated
universes, respectively [19].

Now we consider C; as a non-negative free parameter
to observe the properties of the single-fluid-dominated
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universe. Time evolutions of the normalized scale factor
a/aq with various C; are plotted in Fig. 1. The results for
C, =2, 15, 1, and O are consistent with those for the
radiation-, matter-, empty, and A-dominated universes,
respectively. (Entropic-force terms become more dominant
as C; decreases.)

As shown in Fig. 1, for Hy(t — 1,) > 0, the increase of
the scale factor tends to be faster as C; decreases. That is,
at late times, the expansion of the universe increases with
decreasing C;. In fact, an accelerated expanding universe
is observed when C; <1, e.g., C; = 0.5 and 0. We can
confirm the accelerated expansion from the ‘““deceleration
parameter,” which is used to discuss the expansion of the
universe [17-21]. The deceleration parameter is defined by

w=(z1m)_ e

Substituting Eq. (6) into Eq. (2), we have

S HAH = —CH+H =(1-C)H, (22
a
and arranging this gives
P
— =1-0C. 23
aH2 1 ( )
Accordingly, substituting Eq. (23) into Eq. (21), the decel-
eration parameter is given as

Note that we do not assume the single-fluid-dominated
universe to calculate g, shown in Eq. (24). From Eq. (24),
we find that ¢, is negative when C; < 1. The negative
deceleration corresponds to the acceleration. That is,
when C; < 1, the accelerating universe can be mimicked
by entropic-force terms. Note that Eq. (24) is different from
qo for ACDM models [17], which we will discuss in Sec. I'V.

Ho(t-to)

FIG. 1 (color online). Time evolution of normalized scale
factor a/ay for the single-fluid-dominated universe with various
C,. The horizontal axis is normalized as Hy(t — ty) [19]. The
lines for C; = 2, 1.5, 1, and 0 are equivalent to those for the
radiation-, matter-, empty, and A-dominated universes, respec-
tively. The universe for C; = 0.5 is different from the above
standard single-component universes.

PHYSICAL REVIEW D 87, 043531 (2013)

As mentioned previously, we assumed the single-fluid-
dominated universe to calculate the scale factor. However,
the universe for C; = 0.5 is different from the so-called
single-component universe, such as the radiation-, matter-,
empty, and A-dominated universes appearing in the stan-
dard cosmology [17-21]. This is because, in entropic
cosmology, the entropic-force terms affect the properties
of the universe.

2. Luminosity distance d;

The luminosity distance obtained from the observation
data has been widely used to study the accelerated expan-
sion of the universe. Therefore, we examine the luminosity
distance d; of the single-fluid-dominated universe in en-
tropic cosmology. The luminosity distance [20] is given as
c(l + z) 1+z dy
1 F(y)’

where the integrating variable y and the function F(y) are
given by

dL(Z

(25)

y=— (26)
and
F(y)=—, 27)
and z is the redshift defined by
l+z=y=—. (28)

Substituting Eq. (14) into Eq. (27), and using y = ay/a,
we obtain F(y) as

Foy == (5) " =(2)" = e

HO ao a

Substituting Eq. (29) into Eq. (25), and integrating, we
have

(@)d _ { L1 - (1+2)7 9] (€, # 1)
L
(1+2)In(1 +2) (c, = 1)

c

where C; =1 corresponds to the empty universe [19].
Typical results are given by

Z (Cl :Cl,rzz)
(1+2)z (C;=CA=0)

The luminosity distance for various C; is shown in
Fig. 2, where C; is considered as a non-negative free
parameter. As shown in Fig. 2, the luminosity distance
increases with decreasing C;, especially in higher z re-
gions. This indicates that an accelerated expanding uni-
verse appears when C; is small. In fact, the lines for
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1.0

C=0 05 1 15 2

0.5
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LI L N B B B B e
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0.0 0.5 1.0 1.5 2.0
V4

FIG. 2 (color online). Dependence of luminosity distance d;
on redshift z for the single-fluid-dominated universe with various
C,. The vertical axis is normalized as log ;o[ (Hy/c)d; ].

Cy <1,e.g., C; = 0.5 and 0, correspond to the accelerat-
ing universe, as discussed in Sec. II C 1. For example, the
line for C; = 0 is equivalent to the luminosity distance for
the A-dominated universe. On the other hand, as non-
accelerating universes, the lines for C; =2, 1.5, and 1
are consistent with those for the radiation-dominated,
matter-dominated, and empty universes, respectively. It is
clearly shown that C; affects the properties of the single-
fluid-dominated universe in the present entropic cosmol-
ogy. In Sec. IV, we will discuss the luminosity distance,
including the observed supernova data and ACDM models.

3. Entropy S on the Hubble horizon

In entropic cosmology, we assume that the Hubble hori-
zon has an associated entropy [24]. Therefore, as the third
property, we examine the entropy on the Hubble horizon.
The Hubble horizon (radius) ry and the entropy S on the
Hubble horizon are given as

(32)

c
Iy E,

and

o kBC3 AH

G 4’

where kg, A, and Ay are the Boltzmann constant, the
reduced Planck constant, and the surface area of the sphere
with the Hubble radius ry, respectively [24]. The reduced
Planck constant is defined by # = h/(27), where h is the
Planck constant.

Substituting Ay = 4arr2, into Eq. (33), and using ry =
¢/H shown in Eq. (32), we obtain the entropy as

(33)

S

_ kgc? A_H _ kgc? 47T}"%_1 _ kgc3 (£>2
G 4 nG 4 G "\H

(kaCS) 1 1
= —=K—,
nG ) H? H?

(34)
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where K is a positive constant given by

_ mkgc?
nG

For example, the entropy on the Hubble horizon can be
evaluated as [24,57]:

S~ (2.6 = 0.3) X 10122y,

K (35)

(36)

The entropy on the Hubble horizon is far larger than
the total of the other entropies of the matter within the
horizon [57].

Multiplying Eq. (34) by H} and substituting Eq. (14)
into this, we have

H? 2C
HS = K20 = K(i) ;
ao

(37)

where the single-fluid-dominated universe is assumed
since Eq. (14) is employed. Substituting Eq. (19) into
Eq. (37) and rearranging, we obtain the entropy S on the
Hubble horizon:

<H3)S B l(C,Hot)2 (C, #0)

. 38

To observe the entropy, we consider C; as a non-
negative free parameter. The time evolution of the entropy
S on the Hubble horizon for various C; is plotted in Fig. 3.
The entropy S for C; = 0 does not depend on time. We can
confirm this from both Fig. 3 and Eq. (38). This is because
S depends on H as shown in Eq. (34), and the Hubble
parameter H is constant when C; = 0. [When C; = 0,
Eq. (6) indicates a constant H because dH/dt = 0.] In
contrast, the entropy § increases with time for C; # 0. The
increase of entropy is likely consistent with the second law
of thermodynamics. In Sec. IV, we will discuss the entropy

TT T T T T T T T T T T T T T

T

Ho(t-to)

FIG. 3 (color online). Time evolution of entropy S on the
Hubble horizon for the single-fluid-dominated universe with
various C;. The vertical and horizontal axes are normalized as
(H2/K)S and Hy(t — ty). The lines for C; = 2, 1.5, 1, and 0 are
equivalent to those for the radiation-, matter-, empty, and
A-dominated universes, respectively. The universe for C; = 0.5
is different from the above standard single-component universes.

043531-5



NOBUYOSHI KOMATSU AND SHIGEO KIMURA
2.0

G

o
150 ; N
W :
< ol 0.1 02 [
”% Lof— - /f/

s 0.5
L/ 1
" 15 (G
S
0.0 ‘ :
0 1 2
ala,

FIG. 4 (color online). Dependence of entropy S on normalized
scale factor a/a, for the single-fluid-dominated universe with
various C;. The vertical axis is normalized as (H3/K)S.

S on the Hubble horizon, including ACDM models.
(Strictly speaking, the other entropies should be taken into
account to examine the generalized second law of thermo-
dynamics, as studied in Refs. [48-50]. In the present paper,
we do not discuss the generalized second law.)

We now examine the influence of C; on the entropy. To
this end, we observe the dependence of the entropy S on the
normalized scale factor a/a,, which is given by Eq. (37).
In Fig. 4, C; is varied from 0 to 0.25 with steps of 0.05,
while C is varied from 0.5 to 2 with steps of 0.5. As shown
in Fig. 4, the entropy rapidly increases with decreasing C,,
especially for small a/ay, e.g., a/ay < 0.1, corresponding
to early times. (Note that we focus on the late universe in
this study.) In contrast, for larger a/a, corresponding to
late times, e.g., a/ay > 1, the entropy increases slowly as
C, decreases. In fact, we have observed that the expansion
of the universe further accelerates as C; decreases, as
shown in Eq. (24) and in Figs. 1 and 2. Therefore, at late
times, the entropy increases slowly as C; decreases (or as
the entropic-force terms are further dominant), while
the expansion of the universe accelerates. We can expect
the above relationship between the entropy and the expan-
sion, because S = K/H? = K/(a/a)?, which is obtained
from Egs. (34) and (3).

In this section, we have employed the two modified
Friedmann equations [26] to study the universe in entropic
cosmology. We have solved the equations and examined
the properties of the single-fluid-dominated universe.
Through the parameter C; related to entropic-force terms,
we can summarize the properties of the universe system-
atically. The universe with a specific C; (e.g., C; = 2, 1.5,
1, and 0) is consistent with the single-component universe
appearing in the standard cosmology.

III. FORMULATIONS OF NONADIABATIC
EXPANSION OF THE UNIVERSE

In the previous section, we examined the properties of
the universe described by the modified Friedmann and

PHYSICAL REVIEW D 87, 043531 (2013)

acceleration equations. In this section, we consider a
non-adiabatic-like expansion process caused by an entropy
and a temperature on the Hubble horizon. In Sec. IIT A, we
derive the continuity equation from the first law of ther-
modynamics, assuming nonadiabatic expansion of the
universe. In Sec. III B, using the continuity equation, we
formulate the generalized Friedmann and acceleration
equations, and propose a simple model.

It should be noted that several researchers have dis-
cussed similar modified continuity equations for entropic
cosmology. For example, Cai et al. derived the improved
continuity equation from the first law of thermodynamics
using double holographic screens [29,30], while Qiu and
Saridakis [31] and Casadio and Gruppuso [32] derived the
modified continuity equation from the modified Friedmann
and acceleration equations. Danielsson [33] examined the
sourced acceleration equation using extra source terms and
discussed the modified continuity equation.

A. Modified continuity equation from the first law of
thermodynamics for nonadiabatic expansion

In this subsection, we derive the modified continuity
equation from the first law of thermodynamics, assuming
nonadiabatic expansion of the universe caused by the
entropy and temperature on the Hubble horizon. To this
end, we first review the continuity equation, according to
the textbook by Ryden [19].

From the first law of thermodynamics, the heat flow dQ
across a region is given by

dQ = dE + pdV, (39)

where dE and dV are changes in the internal energy E and
volume V of the region, respectively. This equation can be
rewritten as
dQ dE + pdV
dQ =—dt = ——
0 dt dt
Let us consider a sphere of comoving radius 7; expanding
along with the universal expansion so that its proper radius
r,(?) is given by

dt = (E + pV)dt. (40)

r(t) = a(1)F,. (41)
The volume V(f) of the sphere is
4 4
V() =50 = Ha(), (42)

and therefore, the rate of change of the sphere’s volume is
given as

.4 ;
vV =""¥3a2q) = V<3 3). 43)
3 a

The internal energy E(¢) of the sphere is given by
E@1) = e()V(1), (44)

where the internal energy density &(¢) is

043531-6
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e(t) = p(t)c. (45)

Differentiating Eq. (44) with respect to #, and substituting
Eq. (43) into this equation, the rate of change of the
sphere’s internal energy is given as

E=s'v+aV=<s+3fs)v. (46)
a

Substituting Eqs. (43) and (46) into E + pV, and using
Eq. (45), we calculate E + pV as

) . a a
E+pV= (8 + 3—8)V + pV(3—)
a a
= (8 + 3g8 + 3gp)V
a a
a
- [s +3%6 + p)]V
a

= [p + 39(,0 + %)]czv.
a Cc

Finally, substituting Eqgs. (42) and (47) into Eq. (40), we
obtain the first law of thermodynamics in an expanding (or
contracting) universe:

dQ = dE + pdV = (E + pV)dt

= [p + 33(,) + l;):chth
a C

7 4
= I:p + 3E(p + %)]&(—; r?)dt.
a c

If we assume adiabatic (and isentropic) processes, then dQ
is 0: that is, dQ = TdS = 0, where S and T represent the
entropy and the temperature, respectively. In this case, we
obtain the continuity equation for the adiabatic (isentropic)
process: p + 3(a/a)(p + p/c?) = 0.

However, in this paper, we examine the universe in en-
tropic cosmology. That is, the horizon is assumed to have an
entropy and a temperature, and therefore, the entropy on the
horizon can increase during the evolution of the universe. In
summary, we assume a nonadiabatic process given by

dQ = TdS # 0.

(47)

(48)

(49)

To calculate TdS, we employ the Hubble radius as the
preferred screen, since the apparent horizon coincides with
the Hubble radius in the spatially flat universe [24]. The
Hubble radius ry is given as

HH
ry = % and therefore 7y = — 7r§, (50)
We assume that the Hubble horizon has an associated
entropy S and an approximate temperature 7 [24]. The
entropy shown in Eq. (33) is written as
. k BC3 A H

hG 4’

and the temperature is given by

D
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hH ho ¢
= Xy = -
27TkB 27TkB ryg

T . (52)
We emphasize that the temperature considered here is
obtained from multiplying the so-called horizon tempera-
ture, 7H /(27kg), by 7. In this study, v is a non-negative
free parameter and is of the order of O(1), typically y ~ %
or % In fact, -y corresponds to a parameter for the screen
temperature discussed in Refs. [29-31]. Cai et al. proposed
that cosmological observations constrain the undetermined
coefficient [29,30]. (Easson et al. suggested a similar
modified coefficient for the temperature [24].)

The temperature on the horizon can be evaluated as

_ nH
27TkB

T X 0(1) ~1073% K. (53)
The temperature is lower than the temperature of our
cosmic microwave background (CMB) radiation [29],
Tems = 2.73 K. Accordingly, strictly speaking, the uni-
verse considered here is in thermal nonequilibrium states.
In the present paper, we assume a nonadiabatic expansion
in thermal equilibrium states, using a single holographic
screen [24,25]. (Thermal equilibrium states in entropic
cosmology have been previously discussed using double
holographic screens [29,30].)
From Egs. (51) and (52), we calculate TdS as

kBC3 dAH kBC3
TdS =T X “BC 220 4y 7 5 58S Qr, in)dr
4hG dr anG 87 )
n o c kyc? c*
- X BB R indt = v iydt, (54
ey 1) anG ST H A = Y G Pl (54)

where dAy /dt is d(4mr)/dt = 8arryiy. The first law of
thermodynamics can be written as

dQ = dE + pdV = TdS. (55)

Therefore, substituting Egs. (48) and (54) into Eq. (55),
we have

) a p 4qr e
[p + 3E(p + F)]cz(? r?,)dt = yEert,

where the proper radius r,, shown in Eq. (48), is replaced
by the Hubble radius ry. Arranging the above equation and
substituting Eq. (50) into the equation, we obtain

3¢2 (— HH 3

. a p 3¢ iy 'y
+3-(p+5)= S =YV —a 53—
p a(p cz) loreve ry Y 4nG ry

3 i
= —y|—=HH)
y(4WG )
This is the modified continuity equation derived from the
first law of thermodynamics, assuming nonadiabatic ex-
pansion of the universe. The right-hand side of Eq. (57) is
related to the nonadiabatic process. If H is 0 or if H is

constant, Eq. (57) is the continuity equation for adiabatic
(isentropic) processes. We will discuss this in the next

(56)

(57)
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subsection. (A similar improved continuity equation for
entropic cosmology has been examined in Refs. [29,30].
Note that we have derived the modified continuity equation
from the first law of thermodynamics, neglecting the en-
tropy for high-order corrections.)

As shown in Eq. (57), the modified continuity equation
has the so-called nonzero term on the right-hand side, as if
it were a nonadiabatic process. Therefore, in the present
paper, we call this the nonadiabatic process. (As discussed
later, the nonzero term can be canceled in appearance.) In
fact, it has been known that a similar nonzero term is
included in the continuity equation for other cosmological
models. Accordingly, we introduce two typical models in
the following.

The first model is ““bulk viscous cosmology,” in which a
bulk viscosity of cosmological fluids is assumed [41,58-77].
Because of the bulk viscosity, a similar nonzero term is
included in the continuity equation. (For bulk viscous cos-
mology, see, e.g., the work of Barrow [61].) Usually, the
bulk viscosity is the only thing that can generate a classical
entropy in homogeneous and isotropic cosmologies.
However, in this study, we assume an entropy on the horizon
of the universe, instead of the classical entropy. Therefore,
in Appendix A, we discuss similarities and differences
between bulk viscous cosmology and entropic cosmology.

The second model is “energy exchange cosmology,” in
which the transfer of energy between two fluids is assumed
[78]; e.g., the interaction between matter and radiation
[79,80], matter creation [81,82], interacting quintessence
[83,84], the interaction between dark energy and dark
matter [85,86], dynamical vacuum energy [87-93], etc.
In energy exchange cosmology, two continuity equations
have a similar nonzero term on each right-hand side. Note
that the two nonzero right-hand sides are totally canceled,
since the total energy of the two fluids is conserved. For
example, using a dynamical vacuum term A(z) [89-93], the
continuity equations for matter “m” and vacuum energy
“A” should be arranged as p,,+3(a/a)(p,,+ pm/c?)=
—A and p, +3(a/a)(py + pa/c?) = A, respectively.
The continuity equation for matter is equivalent to
Eq. (57), if A(1) is given by A = oH? [88], where o is a
positive constant. However, in entropic cosmology, we do
not assume a second fluid appearing in energy exchange
cosmology. This is because, in entropic cosmology, an
effective continuity (conservation) equation can be ob-
tained from an effective description of the equation of state
[94] without using a second fluid. In this sense, the effec-
tive description is likely similar to (single-fluid) bulk vis-
cous cosmology rather than energy exchange cosmology,
since an effective pressure is employed in bulk viscous
cosmology, as shown in Appendix A. That is, it is possible
to obtain an effective continuity (conservation) equation in
appearance if we employ such an effective description. For

example, when the effective pressure is given by p’=p+

47;;1‘7, Eq. (57)is arranged as p + 3(a/a)(p + p'/c?) = 0.
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In Appendix B, we discuss the effective description for
entropic cosmology. Of course, the nonzero right-hand
side of Eq. (57) may be interpreted as the interchange of
energy between the bulk (the universe) and the boundary
(the horizon of the universe) [94], as if it were energy
exchange cosmology. Therefore, it is important to examine
a relationship between entropic cosmology and energy
exchange cosmology in more detail. We leave this for
future research.

In the above discussion, we consider y shown in Eq. (57)
as a free parameter for the temperature. However, parame-
ters for the entropy, such as Tsallis’s entropic parameter,
may be required for calculating 7dS. This is because non-
extensive entropy, e.g., Tsallis’s entropy [95] or Renyi’s
entropy [96], has been suggested for generalized entropy of
self-gravitating systems and has been extensively examined
from astrophysical viewpoints [97-109]. Therefore, not
only y but another parameter for the entropy may be re-
quired for the modified continuity equation.

B. Generalized formulations and the simple model

We have three modified equations, i.e., the modified
Friedmann and acceleration equations [Egs. (1) and (2)]
and the modified continuity equation [Eq. (57)]. Two of the
three equations are independent [19]. In this subsection,
using the modified continuity equation, we formulate the
generalized Friedmann and acceleration equations. For this
purpose, we select the modified Friedmann equation,
Eq. (1), and the modified continuity equation, Eq. (57),
as independent equations. This is because the two equa-
tions are related to the conservation law. (The modified
Friedmann equation corresponds to energy conservation.)

As the two independent equations, the generalized
Friedmann equation is given by

a\? 8uG
(&) =*57p + 50 (58)
a 3
and the modified continuity equation is written as
. a p 3 .
+3-(p+5)=—y|—HH) 59
p a@) g) YQWG ) (59)

Here, f(¢) in Eq. (58) is a general function related to
entropic-force terms including high-order corrections.
Danielsson has examined a similar acceleration equation
using an extra source term [33]. (An additional term cor-
responding to f(¢) is not included in the Friedmann equa-
tion for bulk viscous cosmology. See Appendix A.)

We now derive the generalized acceleration equation
from Egs. (58) and (59). To this end, multiplying
Eq. (58) by a?, we have

877G
ﬁzﬁgme& (60)

Differentiating this equation with respect to ¢ gives
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877G .
2ad = %(pa2 +2pad) + fa? + 2faa.  (61)
Dividing Eq. (61) by 2aa gives
47G
e (T B S A
a

Multiplying Eq. (59) by a/a ( = 1/H) and arranging, we

have
.a p 3 A\ 1
—=-3lp+5)—v|l-——=HH )=
P (p c2) 7(4770 )H

— 31+ w)p — y(%H)

(63)
where w is p/(pc?) as shown in Eq. (4). Accordingly,
substituting Eq. (63) into Eq. (62), and using a¢/a = H
we obtain

a 47wG 3 . 1.a

—=—| 30 +wp—yl-—H)+2p|+<f=+

p 3 [ (I+wp 7(4 G ) p] 2fa f
47G

= ——(1 +3w)p + (64)

f .
(727 71)
Equation (64) is the generalized acceleration equation,
which is derived from Egs. (58) and (59).

Before proceeding further, in this paragraph, we discuss a
spatially nonflat (k # 0) universe, where k is a curvature
constant. To this end, we add —kc?/a to the right-hand side
of the generalized Friedmann equation, Eq. (58), as de-
scribed in Appendix A of Ref. [24]. In the spatially nonflat

universe, the apparent horizon, r, =c/y/H? + (k/a?), does
not coincide with the Hubble horizon, ry = ¢/H, because
of k # 0. Accordingly, we employ the apparent horizon as
the preferred screen rather than the Hubble horizon [24].
Consequently, H on the right-hand sides of Egs. (59)
and (64) should be replaced by H — (k/a*). In other
words, the modified continuity equation and the general-
ized acceleration equation should include a curvature term.
Of course, it was argued that the extrinsic curvature at the
surface was likely to result in something like oy = B, =
5 and @y = B, = ;= [25,26]. Note that we consider a
spatially flat (k = 0) universe in the present study.

Next, we discuss a simple model. For this purpose, we
consider only H? terms as entropic-force terms of the
generalized Friedmann equation. That is, f(¢) in Eq. (58)
is set to be

f(t) = B X yH?, (65)
where B is a constant. (We consider only H? terms, since H
terms of the modified Friedmann equation are 0. The de-
tails are summarized in Appendix B.) Substituting Eq. (65)
into Eq. (64), we have
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1 d(ByH?)/d!1

— vyH
2 H Y

i 4nG
- —L(l +3w)p + ByH? +
a

4
= —LG(I + 3w)p + ByH*> + (B — 1)yH.

(66)
In fact, Easson et al. first proposed that the entropic-force
terms are H? or %HZ; i.e., H terms are not included in the
entropic-force terms [24]. Accordingly, we determine B so
that the H term in Eq. (66) is canceled. In other words, for
the simple model, we select B as

B =1, and therefore f(t) = yH>. (67)

In this case, we can obtain the simple self-consistent
equations. The simple modified Friedmann, acceleration,
and continuity equations are summarized as

a\2 887G
(5) =570 + w2, (68)
.
gz - —”G(l + 3w)p + yH?, (69)
p+3— (1 +w)p = —'y(%HH) (70)

The entropic-force term yH? in Eq. (68) is the same as the
term in Eq. (69). The above two modified Friedmann
equations, i.e., Egs. (68) and (69), correspond to Egs. (1)
and (2) for ¢y = By =7y and a, = B, =0. (a; = B
satisfies the constraint 8; — «@; = 0.02 = 0.08, as is con-
cluded in Ref. [26].) Therefore, we can easily calculate the
properties of the single-fluid-dominated universe, as exam-
ined in Sec. IIC.

In the present study, we do not assume a cosmological
constant A and dark energy, since additional driving terms
can be derived from the entropic-force on the Hubble
horizon. However, if yH? is fixed as a constant A/3, the
above three equations are equivalent to ACDM models
[17]. [The right-hand side of Eq. (70) is O when yH? is
constant, because d(yH?)/dt=2yHH =0.] For ex-
ample, if we consider the matter-dominated universe with
w=0fora; =8, =vy=1and @y, = B, =0, then C; is
0 from Eq. (7). The universe for C; = 0 corresponds to the
A-dominated universe in the standard cosmology [17-21].

In this section, we have derived the modified continuity
equation from the first law of thermodynamics, assuming a
nonadiabatic expansion of the universe. Using the obtained
continuity equation, we have formulated the generalized
Friedmann and acceleration equations, i.e., Egs. (58) and
(64). Moreover, as a possible model, we have proposed the
simple model given by Egs. (68)—(70). We will discuss the
properties of the simple model in the next section. Note
that Cai et al. [29,30], Qiu et al. [31], Casadio et al. [32],
and Danielsson [33] have discussed similar modified con-
tinuity equations. The above obtained equations are related
to their works.
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IV. EVOLUTION OF THE LATE UNIVERSE
IN THE SIMPLE MODEL

In this section, we examine evolution of the late universe
using the simple model given by Eqs. (68)—(70). To this
end, we first examine the luminosity distance d; because,
through d;, we can easily compare the simple model not
only with ACDM models but also with the observed
supernova data.

For the present simple model, we consider the matter-
dominated universe since, in entropic cosmology, we do
not assume the cosmological constant and dark energy.
(The influence of radiation is extremely small in the late
universe, as discussed later.) The matter-dominated uni-
verse is given by

w=0. (71)

In the simple model, the four parameters shown in Egs. (1)
and (2), i.e., a;, a,, B, and B,, are set to be

ap =B =v, (72)
and
a =B, =0, (73)
where vy is assumed to be
3 1
y = W or 7 (74)

Substituting the above equations into Eq. (7), C, is calcu-
lated as

o 3(1-2)=0783... (y=%). .

(r=1)

From Eq. (30), we can calculate the luminosity distance d;,
for the simple model. Of course, we accept that 7y should be
a free parameter. However, we determine y as shown in
Eq. (74). [The coefficient 3/(27r) was anticipated from the
surface term order, while the coefficient 1/2 was expected
from the Hawking temperature description, as described in
Ref. [24].] In fact, the properties of the universe for y =
3/(27r) are almost the same as the properties for y = 1/2,
since the difference of C, between y = 3/(27) and 1/2 is
small, as shown by Eq. (75). Therefore, for the present
simple model, we will observe the properties of the uni-
verse for y = 1/2,i.e., C; = 3/4.

For ACDM models, the luminosity distance of the spa-
tially flat universe is given as

(%)dL —(1+2) fo “dZ[(1+ 221+ Q,,7)

— 72+ )12 (76)

where ), = ’/’)—"C’ = %and Q) = zATg [16]. Q,, and Q

represent the density parameters for the matter and the
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cosmological constant, respectively. p,. represents the criti-
cal density, while p,, is the density for matter which
includes baryon and dark matter. For the flat universe,
Qoa 18 given as Qi = Q,, + O, = 1. Here, we neglect
the density parameter (), for the radiation, since (), is
extremely small, e.g., 107* ~ 107> [19]. As typical uni-
verses, (£),,, 1 4) is set to be (1, 0), (0.27, 0.73), and (0, 1).
Note that the notation is simplified as Q,, = 1, (},, = 0.27,
and (), = 0. The universes for {),, = 1 and 0 correspond to
the matter- and A-dominated universes, respectively. That
is, the universes for ), = 1 and 0 are equivalent to the
universes for C; = 1.5 and 0, as discussed in the previous
section. The universe for (2,,, Q) = (0.27, 0.73) is a fine-
tuned standard ACDM model, which takes into account the
recent Wilkinson Microwave Anisotropy Probe (WMAP)
best fit values [14]. We numerically calculate d; for the
standard ACDM model, since we cannot analytically solve
Eq. (76), except for special cases [16].

Figure 5 shows the luminosity distance d; for the
present simple model, supernova data points, and several
ACDM models. We find that the simple model agrees well
with supernova data points and the fine-tuned standard
ACDM model, i.e., (2, Q) = (0.27,0.73). It is success-
fully demonstrated that the simple model can mimic the
present accelerating universe without adding the cosmo-
logical constant and dark energy. In entropic cosmology, at
least, it is possible to discuss why 7y has such a value,

1.0

Observed data points

log,, [(Hy/c) d; (2)]

® Present model CIZ%

| L L N N N B B N B N s B N

_2.0 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2

z

FIG. 5 (color online). Dependence of luminosity distance d;
on redshift z. The closed diamonds with error bars are supernova
data points taken from Refs. [6,7]. The closed circles represent
the present simple model. The parameters are w =0, a; =
Bi=vy=1/2, and @, = B, =0, i.e., C; = 3/4. For clarity,
the present model is plotted as closed circles. The three solid
lines represent the ACDM model for (Q,,, Q,) = (1, 0), (0.27,
0.73), and (0, 1). The solid lines for Q,, = 1 and ,, = 0 are
equivalent to lines for C; = 1.5 and C; = 0. Note that ((),,, ()
is replaced by (},,. For supernova data points, ¢ and H,, are set to
be 3.0 X 10° km/s and 70 km/s/Mpc [14], respectively.
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unlike for the ACDM model. For example, vy may be
estimated from a derivation of surface terms or the
Hawking temperature description [24]. Note that Easson
et al. have suggested an alternate acceleration equation for
a better fitting, where the entropic-force term is %Hz +
ﬁ[-'l [24]. In fact, we have confirmed that the present
simple model is better than the alternate acceleration equa-
tion; i.e., the present model agrees well with the standard
ACDM model, compared with the alternate acceleration
equation suggested in Ref. [24].

Next, we examine the entropy on the Hubble horizon,
using the present simple model and ACDM models. The
entropy S for the simple model is calculated from Eq. (38)
with C; = 3/4 for v = 1/2, while S for the ACDM model
is calculated from S = K/H? as shown in Eq. (34). Since
the entropies for (),, =1 and O are equivalent to the
entropies for C; = 1.5 and 0, we can calculate them ana-
lytically. On the other hand, we numerically compute the
entropy for the fine-tuned standard ACDM model, i.e.,
(Q,,, Q,) = (0.27,0.73). For the standard ACDM model,
we employ the following equation [19]:

a da
Hot = 0, , O ’
0 Ja_zr + f + ()Aa2 + (1 - Qtotal)

(77)

We first integrate Eq. (77) numerically to obtain the time
evolution of the scale factor a. The Hubble parameter H is
numerically calculated from H = d/a. Therefore, we can
obtain the entropy § = K/H? for the standard ACDM
model. In the present study, we assume a spatially flat
universe, i.e., ) = 1, and neglect the influence of ra-
diation, i.e., (), = 0.

Now, we observe the time evolution of the entropy S on
the Hubble horizon. As shown in Fig. 6, the entropies for
both the simple model and the fine-tuned standard ACDM
model increase with time until the present time,
H(t — ty) = 0. In this sense, the simple model is similar
to the fine-tuned standard ACDM model, i.e., (Q,,, Q) =
(0.27,0.73). However, we can observe the difference
between them clearly. For example, the increase of the
entropy for the simple model is likely uniform, even after
the present time, i.e., H(t — ;) > 0. In contrast, the in-
crease of the entropy for the standard ACDM model tends
to become gradually slower, especially after the present
time, as if the present time were a special time. This is
because the cosmological constant A is very dominant in
the standard ACDM model. To examine the entropy more
closely, we focus on the rate of the change of the entropy.
As shown in Fig. 6, d>S/d¢* for the simple model is always
positive, while d>S/d#t* for the standard ACDM model is
negative except for the early stage. From Eq. (38), we can
confirm a positive d>S/d¢* for the present simple model,
because d?S/dr* = 2KC? >0 for C; # 0, where K is a
positive constant given by Eq. (35).

As discussed above, the increase in entropy for
the present simple model is uniform, while that for the
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FIG. 6 (color online). Time evolution of entropy S on the
Hubble horizon. The vertical and horizontal axes are normalized
as (H3/K)S and H,(t — t,), respectively. For details, see the
caption of Fig. 5.

fine-tuned standard ACDM model becomes gradually
slower, especially after the present time. In other words,
the standard ACDM model implies that the present time is
a special time. In fact, the entropy of the accelerated
expanding universe has been extensively discussed from
various viewpoints [46-55]. Many of the earlier works
suggest that the increase of the entropy tends to become
gradually slower, especially after the present time, because
of the standard ACDM model. However, the simple model
considered here predicts that the present time is not a
special time, unlike the prediction of the standard
ACDM model. [We have confirmed that the scale factor
a for the simple model increases uniformly even after the
present time, while a for the fine-tuned standard ACDM
model increases rapidly after the present time. (The figure
is not shown.) This result is consistent with the result for
the entropy shown in Fig. 6. This is because S is calculated
from K/H? [ = K/(a/a)?*], as shown in Eq. (34).]

Finally, we examine the deceleration parameter g,. We
can calculate g, for the present simple model as g, =
—0.25, by substituting C; = 3/4 into gy = C; — 1 shown
in Eq. (24). On the other hand, ¢, for the standard
ACDM model can be calculated as gq = —0.6, from g, =
Q,, —2Q, +2Q,)/2 [17], where (Q,,, Q 4, ,) is set to
be (0.27, 0.73, 0). Therefore, at the present time, the
acceleration for the simple model is slower than that for
the standard ACDM model. This is because the density
parameter (), for the cosmological constant is dominant in
the standard ACDM model. In contrast, in the simple
model, we assume the matter-dominated universe in en-
tropic cosmology, without adding the cosmological con-
stant and dark energy.

V. CONCLUSIONS

We have examined nonadiabatic expansion of the late
universe and discussed the evolution of the entropy on the
Hubble horizon, to study entropic cosmology from a
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thermodynamics viewpoint. For this purpose, we have
employed the two modified Friedmann equations, i.e., the
modified Friedmann equation and the modified accelera-
tion equation. First of all, based on the two equations for
entropic cosmology, we have examined the properties of
the single-fluid-dominated universe, neglecting high-order
terms for quantum corrections. Consequently, we can sys-
tematically summarize the properties of the late universe,
through a parameter C, related to entropic-force terms. It is
found that, at late times, the entropy on the Hubble horizon
increases slowly with decreasing C; (or as the influence of
entropic-force terms increases), while the expansion of the
universe accelerates.

We have also derived the continuity equation from the
first law of thermodynamics, assuming nonadiabatic expan-
sion of the universe. Using the obtained continuity equation,
we have formulated the generalized Friedmann and accel-
eration equations and have proposed a simple model as a
possible model. Through the luminosity distance, it is suc-
cessfully shown that the simple model can explain the
present accelerating Universe and agrees well with both
the supernova data and the fine-tuned standard ACDM
model. On the other hand, the increase of the entropy for
the simple model is uniform, although the increase of the
entropy for the standard ACDM model gradually becomes
slower, especially after the present time. In other words, the
simple model implies that the present time is not a special
time, unlike the prediction of the standard ACDM model.
We find that the present simple model predicts another
future which is different from the standard ACDM model.

The present study has revealed the fundamental proper-
ties of the nonadiabatic expanding universe in entropic
cosmology. As one of several possible scenarios, the gener-
alized formulation and the simple model considered here
will help in understanding the accelerating expanding
Universe. Of course, it is difficult to determine 7y related
to the temperature on the Hubble horizon. However, at least
in principle, it is possible to discuss the accelerating universe
quantitatively, by means of the present entropic cosmology.
Further discussions and observational data will be required
to examine the present and future of the universe.

The modified continuity equation examined here has the
so-called nonzero term on the right-hand side. Therefore,
through the present paper, we call this the nonadiabatic
process. If we employ an effective description similar to
bulk viscous cosmology, the nonzero term on the right-hand
side can be canceled in appearance. Alternatively, the non-
zero term may be interpreted as the interchange of energy
between the bulk (the universe) and the boundary (the
horizon of the universe). Accordingly, it will be necessary
to study entropic cosmology from various viewpoints.

APPENDIX A: BULK VISCOUS COSMOLOGY

In the present study, we consider a homogeneous and
isotropic universe and assume an entropy on the horizon of
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the universe for entropic cosmology. However, usually, a
bulk viscosity is the only thing that can generate an entropy
in the homogeneous and isotropic universe. Such a cosmo-
logical model is called a “bulk viscous cosmology” and
has been extensively investigated [41,58-77]. In this
appendix, we discuss similarities and differences between
bulk viscous cosmology and entropic cosmology.

In bulk viscous cosmology, a bulk viscosity of cosmo-
logical fluids is assumed, and an effective pressure p’ is
given by

p'=p—3Hny, (A1)

where n is the bulk viscosity [61,70]. The continuity
equation is

P

a /
p+3;<p+?)=0. (A2)

Substituting Eq. (A1) into Eq. (A2) and arranging, we have
. 2
p+3ﬁ(p+£2>=—9H2’7. (A3)
a c c

Equation (A3) is similar to Eq. (57) because of a nonzero
right-hand side. The right-hand side of Eq. (A3) is related
to a classical entropy generated by bulk viscous stresses.
On the other hand, in entropic cosmology, we assume an
entropy (and a temperature) on the horizon of the universe,
instead of the classical entropy. Accordingly, the right-
hand side of Eq. (57) is related to the entropy on the
horizon, unlike in bulk viscous cosmology. In fact,
Davies [41] and Barrow [61] have suggested a total en-
tropy, i.e., the sum of the entropy on the horizon and the
classical entropy generated by the bulk viscous stresses, to
discuss the generalized second law of event horizon ther-
modynamics. That is, in the present entropic cosmology,
we focus on the entropy on the horizon, neglecting the

classical entropy discussed above.
We now examine the Friedmann equation. In bulk vis-
cous cosmology, the Friedmann equation [61] is given by

a\?  8wG

<a) 3 p-
Equation (A4) does not include an additional term such as
a cosmological constant. On the other hand, in entropic
cosmology, the Friedmann and acceleration equations have
additional driving terms, which are derived from the usu-
ally neglected surface terms on the horizon. However, an
additional term appears in the acceleration equation for
bulk viscous cosmology. For example, the acceleration
equation can be arranged as

.. /
E=_47TG(p+3p_)
a

(A4)

3 c?
AmG )4 127GHn
=~ <p+3?)+72 , (AS5)
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where the last term, 127GH 7/ c?, corresponds to the addi-
tional driving term. The additional term can explain the
accelerated expansion of the universe.

APPENDIX B: DIMENSIONLESS CONSTANTS AND
AN EFFECTIVE DESCRIPTION FOR ENTROPIC
COSMOLOGY

Entropic-force terms of the modified Friedmann and
acceleration equations include four dimensionless con-
stants aq, a,, B, and B,. In this appendix, we determine
the dimensionless constants and examine an effective de-
scription for entropic cosmology. To this end, we first
derive the modified continuity equation from the modified
Friedmann and acceleration equations, although we have
already derived the modified continuity equation from the
first law of thermodynamics. This is because we can de-
termine most of the dimensionless constants using the two
continuity equations.

The modified Friedmann and acceleration equations,
i.e., Egs. (1) and (2), can be written as

(@)2 — %p([) + a H(t)> + a,H(1)

a(r) 3

=70 + 10 ®1)
and
O — 2701+ 3l + BHGP + BHOD

= =170 4 3wpl0) + 500, ®2)

where f(¢) and g(z) are given by

f(0) = aH()? + ayH (1) (B3)
and

g() = BiH()* + BoH (). (B4)

The four coefficients «, a,, 81, and B, are dimensionless
constants. Equation (B1) is the same formulation as
Eq. (58). Therefore, as shown in Eq. (62), arranging
Eq. (B1) gives

477G

3

Substituting Eq. (B5) into Eq. (B2), and arranging this
using H = a/a, we have

(B5)

.. 1.
- (pﬁ.+2p>+—faf+f-
a a 27 a

a 3 f
pH3_(1+wp 477(;(f 5 g) (B6)
When f and g are general functions, Eq. (B6) represents
the generalized continuity equation. However, in this ap-
pendix, f and g are given by Eqgs. (B3) and (B4), respec-
tively. Differentiating Eq. (B3) with respect to ¢ gives
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f=2a,HH + a,H. (B7)

Accordingly, substituting Egs. (B3), (B4), and (B7), into
Eq. (B6), we obtain

) 3 '
p+ 33(1 +w)p = —[(—a1 —a, + B)HH
a 477G

+(—ay + B)H? — %H] (BS)

Equation (B8) is the modified continuity equation derived
from the modified Friedmann and acceleration equations.
We now determine as many of the dimensionless con-
stants as possible. For this purpose, we compare Eq. (BS)
with the modified continuity equation derived from the first
law of thermodynamics, i.e., Eq. (70):
a 3 .
p+3—-(1+wp= —y(—HH). (B9)
a 4G
The two modified continuity equations, i.e., Egs. (B8)
and (B9), must be consistent with each other. Therefore,
three dimensionless constants can be determined when
HH, H? and H are not 0. The three constants in
Egs. (B1) and (B2) are given by

a, =0, (B10)
B = ay, (B11)
By =a; —v. (B12)

Note that «; and <y should be determined from a different
viewpoint, as mentioned previously. Consequently, the modi-
fied self-consistent equations (i.e., the modified Friedmann,
acceleration, and continuity equations) are summarized as

N\2  87wG
(g) =+ (B13)
(i 417G :
g: —%(1 +3w)p + aH? + (a; — y)H, (Bl4)

o380+ w)p = —y<iHH). (B15)
a 4G
Entropic-force terms of the modified Friedmann equation are
only H? terms, as shown in Eq. (B13).

In the present study, we have selected &y = 8; = y and
a, = B, =0, to set up a simple model. We can confirm
that the selection is consistent with Egs. (B10)—(B12).
Of course, the simple model is consistent with
Egs. (B13)—(B15), since v is selected as «;. If Egs. (B1)
and (B2) are used for the modified Friedmann and accel-
eration equations, we can propose the above self-consistent
equations to examine a nonadiabatic expansion of the late
universe in entropic cosmology.

Finally, we examine an effective description for entropic
cosmology as discussed in Sec. III A. This is because it is
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possible to obtain an effective continuity (conservation)
equation when we employ an effective pressure similar to
bulk viscous cosmology. In this study, the effective pres-
sure is given by
N L
P=rt 477G .
and the equation of state parameter w' for the effective
description is

(B16)

pl
pc?’
where w' is different from w = p/(pc?) of Eq. (4). We can
arrange Eqgs. (B14) and (B15), using Egs. (B16) and (B17).
As a result, the self-consistent equations based on the
effective description are summarized as

7\ 2

(E) _876 s,
a 3

/

w! = (B17)

(B18)
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477G .

gz — 5 (1 +3w)p + a B + ayH,  (BIY)

b+ 3%(1 +whp = 0. (B20)
As shown in Egs. (B19) and (B20), the effective descrip-
tion helps to simplify the formulas of entropic cosmology.
In particular, as shown in Eq. (B20), the so-called nonzero
term on the right-hand side of Eq. (B15) is canceled in
appearance. Therefore, Eq. (B20) may be suitable for
discussing the continuity equation. However, through the
present paper, we employ Eq. (B15) to make the nonzero
term clear. [It should be noted that not only Eq. (B15) but
also Eq. (B20) is different from the continuity (conserva-
tion) equation discussed by Easson et al. [24]. Similarly,
our dimensionless constants determined in this study are
expected to be different from their suggested constants.]
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