31,985 research outputs found

    A supersymmetric D-brane Model of Space-Time Foam

    Full text link
    We present a supersymmetric model of space-time foam with two stacks of eight D8-branes with equal string tensions, separated by a single bulk dimension containing D0-brane particles that represent quantum fluctuations in the space-time foam. The ground state configuration with static D-branes has zero vacuum energy. However, gravitons and other closed-string states propagating through the bulk may interact with the D0-particles, causing them to recoil and the vacuum energy to become non zero. This provides a possible origin of dark energy. Recoil also distorts the background metric felt by energetic massless string states, which travel at less than the usual (low-energy) velocity of light. On the other hand, the propagation of chiral matter anchored on the D8 branes is not affected by such space-time foam effects.Comment: 33 pages, latex, five figure

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    Dynamics of Inflationary Universes with Positive Spatial Curvature

    Get PDF
    If the spatial curvature of the universe is positive, then the curvature term will always dominate at early enough times in a slow-rolling inflationary epoch. This enhances inflationary effects and hence puts limits on the possible number of e-foldings that can have occurred, independently of what happened before inflation began and in particular without regard for what may have happened in the Planck era. We use a simple multi-stage model to examine this limit as a function of the present density parameter Ω0\Omega_0 and the epoch when inflation ends.Comment: 9 Pages RevTex4. Revised and update

    Gravitational waves and cosmic magnetism; a cosmological approach

    Full text link
    We present the formalism for the covariant treatment of gravitational radiation in a magnetized environment and discuss the implications of the field for gravity waves in the cosmological context. Our geometrical approach brings to the fore the tension properties of the magnetic force lines and reveals their intricate interconnection to the spatial geometry of a magnetised spacetime. We show how the generic anisotropy of the field can act as a source of gravitational wave perturbations and how, depending on the spatial curvature distortion, the magnetic tension can boost or suppress waves passing through a magnetized region.Comment: Minor changes. References added. To appear in Class. Quantum Gra

    Shrinking II -- The Distortion of the Area Distance-Redshift Relation in Inhomogeneous Isotropic Universes

    Get PDF
    This paper and the others in the series challenge the standard model of the effects of gravitational lensing on observations at large distances. We show that due to the cumulative effect of lensing, areas corresponding to an observed solid angle can be quite different than would be estimated from the corresponding Friedmann-Lema\^{\i}tre model, even when averaged over large angular scales. This paper concentrates on the specific example of spherically symmetric but spatially inhomogeneous dust universes, the Lema\^{\i}tre-Tolman-Bondi models, and shows that radial lensing significantly distorts the area distance-redshift and density-redshift relations in these exact solutions compared with the standard ones for Friedmann-Lema\^{\i}tre models. Thus inhomogeneity may introduce significant errors into distance estimates based on the standard FL relations, even after all-sky averaging. In addition a useful new gauge choice is presented for these models, solving the problem of locating the past null cone exactly.Comment: Minor technical refinement, 16 pages, RevTex, 8 eps figure

    Full one-loop amplitudes from tree amplitudes

    Get PDF
    We establish an efficient polynomial-complexity algorithm for one-loop calculations, based on generalized DD-dimensional unitarity. It allows automated computations of both cut-constructible {\it and} rational parts of one-loop scattering amplitudes from on-shell tree amplitudes. We illustrate the method by (re)-computing all four-, five- and six-gluon scattering amplitudes in QCD at one-loop.Comment: 27 pages, revte

    Gravity and Signature Change

    Get PDF
    The use of proper ``time'' to describe classical ``spacetimes'' which contain both Euclidean and Lorentzian regions permits the introduction of smooth (generalized) orthonormal frames. This remarkable fact permits one to describe both a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature.Comment: Plain TeX, 6 pages; to appear in GR

    Constraints on Inflationary Solutions in the Presence of Shear and Bulk Viscosity

    Get PDF
    Inflationary models and their claim to solve many of the outstanding problems in cosmology have been the subject of a great deal of debate over the last few years. A major sticking point has been the lack of both good observational and theoretical arguments to single out one particular model out of the many that solve these problems. Here we examine the degree of restrictiveness on the dynamical relationship between the cosmological scale factor and the inflation driving self-interaction potential of a minimally coupled scalar field, imposed by the condition that the scalar field is required to be real during a classical regime (the reality condition). We systema\-tically look at the effects of this constraint on many of the inflationary models found in the literature within the FLRW framework, and also look at what happens when physically motivated perturbations such as shear and bulk viscosity are introduced. We find that in many cases, either the models are totally excluded or the reality condition gives rise to constraints on the scale factor and on the various parameters of the model.Comment: 21 pages, LaTe

    Hubble's law and faster than light expansion speeds

    Full text link
    Naively applying Hubble's law to a sufficiently distant object gives a receding velocity larger than the speed of light. By discussing a very similar situation in special relativity, we argue that Hubble's law is meaningful only for nearby objects with non-relativistic receding speeds. To support this claim, we note that in a curved spacetime manifold it is not possible to directly compare tangent vectors at different points, and thus there is no natural definition of relative velocity between two spatially separated objects in cosmology. We clarify the geometrical meaning of the Hubble's receding speed v by showing that in a Friedmann-Robertson-Walker spacetime if the four-velocity vector of a comoving object is parallel-transported along the straight line in flat comoving coordinates to the position of a second comoving object, then v/c actually becomes the rapidity of the local Lorentz transformation, which maps the fixed four-velocity vector to the transported one.Comment: 5 pages, 2 figures, to appear in Am. J. Phy
    • …
    corecore