24,172 research outputs found

    Factors influencing the relationship between the dose of amlodipine required for blood pressure control and change in blood pressure in hypertensive cats

    Get PDF
    BACKGROUND: Hypertension is a common problem in elderly cats. In most cats, systolic blood pressure (SBP) of <160 mmHg is achieved in response to amlodipine besylate at either 0.625 or 1.25 mg q24h. The individual cat factors determining dose requirement dose have not been explored. AIMS: To determine whether individual cat factors influence the dose of amlodipine required to achieve adequate blood pressure control and to determine whether factors other than the prescribed dose of drug alter the achieved plasma amlodipine concentrations. METHODS: Fifty‐nine hypertensive cats that required 0.625 mg (A) and 41 cats that required 1.25 mg (B) amlodipine to reach a target SBP of <160 mmHg were identified, and plasma amlodipine concentrations were determined. Comparisons were made between groups, and multivariable linear regression models were performed to investigate predictors of antihypertensive response. RESULTS: Cats that required a greater dose of amlodipine had significantly higher SBP at diagnosis of hypertension (A: (median [25th, 75th percentile]) 182 [175,192] mmHg; B: 207 [194,217] mmHg, P < .001), but comparable blood pressure was achieved after treatment. Plasma amlodipine concentrations were directly related to the dose of amlodipine administered. At diagnosis, cats in group B had significantly lower plasma potassium concentration (A: 4.1 [3.8,4.5]; B: 3.8 [3.6,4.2] mEq/L, P < .01). Weight did not differ between groups. The decrease in SBP was directly and independently associated with the SBP at diagnosis and the plasma amlodipine concentration. CONCLUSIONS AND CLINICAL IMPORTANCE: Cats with higher blood pressure at diagnosis might require a greater dose of amlodipine to control their blood pressure adequately. Differences in amlodipine pharmacokinetics between cats do not seem to play a role in the antihypertensive response

    The resistible effects of Coulomb interaction on nucleus-vapor phase coexistence

    Full text link
    We explore the effects of Coulomb interaction upon the nuclear liquid vapor phase transition. Because large nuclei (A>60) are metastable objects, phases, phase coexistence, and phase transitions cannot be defined with any generality and the analogy to liquid vapor is ill-posed for these heavy systems. However, it is possible to account for the Coulomb interaction in the decay rates and obtain the coexistence phase diagram for the corresponding uncharged system.Comment: 5 pages, 5 figure

    Moderate temperature rechargeable sodium batteries

    Get PDF
    Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles

    Nonabelian density functional theory

    Full text link
    Given a vector space of microscopic quantum observables, density functional theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem and the existence of the universal energy functional in the dual space are proven. In this context ordinary density functional theory corresponds to the space of one-body multiplication operators. When the operators close under commutation to form a Lie algebra, the energy functional defines a Hamiltonian dynamical system on the coadjoint orbits in the algebra's dual space. The enhanced density functional theory provides a new method for deriving the group theoretic Hamiltonian on the coadjoint orbits from the exact microscopic Hamiltonian.Comment: 1 .eps figur

    Renal fibrosis in feline chronic kidney disease: known mediators and mechanisms of injury

    Get PDF
    Chronic kidney disease (CKD) is a common medical condition of ageing cats. In most cases the underlying aetiology is unknown, but the most frequently reported pathological diagnosis is renal tubulointerstitial fibrosis. Renal fibrosis, characterised by extensive accumulation of extra-cellular matrix within the interstitium, is thought to be the final common pathway for all kidney diseases and is the pathological lesion best correlated with function in both humans and cats. As a convergent pathway, renal fibrosis provides an ideal target for the treatment of CKD and knowledge of the underlying fibrotic process is essential for the future development of novel therapies. There are many mediators and mechanisms of renal fibrosis reported in the literature, of which only a few have been investigated in the cat. This article reviews the process of renal fibrosis and discusses the most commonly cited mediators and mechanisms of progressive renal injury, with particular focus on the potential significance to feline CKD

    The Interference Term between the Spin and Orbital Contributions to M1 Transitions

    Get PDF
    We study the cross-correlation between the spin and orbital parts of magnetic dipole transitions M1 in both isoscalar and isovector channels. In particular, we closely examine certain cases where B(M1)\sum B(M1) is very close to B(M1)σ+B(M1)l\sum B(M1)_{\sigma} + \sum B(M1)_l, implying a cancellation of the summed interference terms. We gain some insight into this problem by considering special cases approaching the SU(3) limit, and by examining the behaviour of single-particle transitions at the beginning and towards the end of the s-d shell.Comment: 9 pages of latex file and no figure

    Mean field baryon magnetic moments and sumrules

    Full text link
    New developments have spurred interest in magnetic moments (μ\mu-s) of baryons. The measurement of some of the decuplet μ\mu-s and the findings of new sumrules from various methods are partly responsible for this renewed interest. Our model, inspired by large colour approximation, is a relativistic self consistent mean field description with a modified Richardson potential and is used to describe the μ\mu-s and masses of all baryons with up (u), down (d) and strange (s) quarks. We have also checked the validity of the Franklin sumrule (referred to as CGSR in the literature) and sumrules of Luty, March-Russell and White. We found that our result for sumrules matches better with experiment than the non-relativistic quark model prediction. We have also seen that quark magnetic moments depend on the baryon in which they belong while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl
    corecore