71 research outputs found

    Motor and autonomic concomitant health improvements with neuromodulation and exercise (MACHINE) training:a randomised controlled trial in individuals with spinal cord injury

    Get PDF
    Introduction Motor and autonomic dysfunctions are widespread among people with spinal cord injury (SCI), leading to poor health and reduced quality of life. Exercise interventions, such as locomotor training (LT), can promote sensorimotor and autonomic recovery post SCI. Recently, breakthroughs in SCI research have reported beneficial effects of electrical spinal cord stimulation (SCS) on motor and autonomic functions. Despite literature supporting the independent benefits of transcutaneous SCS (TSCS) and LT, the effect of pairing TSCS with LT is unknown. These therapies are non-invasive, customisable and have the potential to simultaneously benefit both sensorimotor and autonomic functions. The aim of this study is to assess the effects of LT paired with TSCS in people with chronic SCI on outcomes of sensorimotor and autonomic function.Methods and analysis Twelve eligible participants with chronic (>1 year) motor-complete SCI, at or above the sixth thoracic segment, will be enrolled in this single-blinded, randomised sham-controlled trial. Participants will undergo mapping for optimisation of stimulation parameters and baseline assessments of motor and autonomic functions. Participants will then be randomly assigned to either LT+TSCS or LT+Sham stimulation for 12 weeks, after which postintervention assessments will be performed to determine the effect of TSCS on motor and autonomic functions. The primary outcome of interest is attempted voluntary muscle activation using surface electromyography. The secondary outcomes relate to sensorimotor function, cardiovascular function, pelvic organ function and health-related quality of life. Statistical analysis will be performed using two-way repeated measures Analysis of variance (ANOVAs) or Kruskal-Wallis and Cohen’s effect sizes.Ethics and dissemination This study has been approved after full ethical review by the University of British Columbia’s Research Ethics Board. The stimulator used in this trial has received Investigation Testing Authorisation from Health Canada. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars.Trial registration number NCT04726059

    Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats

    Get PDF
    Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso's dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N = 33) foraged in shallow and deep habitats [seabed depths less or more than 560 m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for >50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval (IBI), suggesting higher costs of pursuing, and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness

    Nitrous Oxide Inhalation Among Adolescents: Prevalence, Correlates, and Co-Occurrence with Volatile Solvent Inhalation

    Get PDF
    Few studies have examined the prevalence of nitrous oxide (NO) inhalation or co-occurrence of NO and volatile solvent (VS) use in adolescents. Study aims were to (1) describe the independent and conjoint prevalence of NO and VS use in incarcerated youth, (2) compare adolescent users of both NO and VS inhalants (NO+VS) to users of NO-only, VS-only, and nonusers of NO and VS (NO/VNS nonusers) with regard to demographic, psychological, and behavioral characteristics, and (3) conduct logistic regression analyses identifying correlates of NO use. Residents (N = 723) of Missouri Division of Youth Services were assessed with standardized psychosocial measures. Participants averaged 15.5 (SD = 1.2) years of age, were ethnically diverse and predominantly male. Lifetime prevalence of NO use was 15.8%. NO+VS users evidenced greater impairments compared to NO+VS nonusers. VS-only users evidenced impairments that were similar in kind but at lower prevalences compared to those displayed by NO+VS users, whereas NO-only youth had profiles that were similar to those of NO/VS nonusers. Psychiatric disorders, polydrug use, and temperamental fearlessness were correlates of NO use. NO+VS users were at high risk for behavioral and emotional problems. Screening and interventions for NO and VS inhalant use should be implemented in juvenile justice facilities.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78160/1/nihms217666.pd

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
    corecore