1,974 research outputs found

    ECONOMICS OF AGRICULTURAL SOIL CARBON SEQUESTRATION IN THE NORTHERN PLAINS

    Get PDF
    Under the Kyoto protocol of the United Nations Framework Convention on Climate Change the United States is charged with reducing emissions of greenhouse gases to seven percent below their 1990 levels by the period 2008-2012. These reductions could be met from many industries including agriculture. In this paper, an economic simulation model is linked to an ecosystem model to quantify the economic efficiency of policies that might be used to sequester carbon (C) in agricultural soils in the Northern Plains region. Simulations with the Century ecosystem model show that long-term soil C levels associated with a crop/fallow system are less than those for grass alone, but that soil C levels for grass-clover-pasture are greater than for continuously cropped grains. The analysis shows that a CRP-style policy is found to be an inefficient means to increase soil C because the per acre payments to convert crop-land to grass-only draw land from both the crop/fallow system and the continuous cropping system, and costs typically exceed 100perMT(metricton)ofC.Incontrast,paymentstoadoptcontinuouscroppingwerefoundtoproduceincreasesinsoilCforbetween100 per MT (metric ton) of C. In contrast, payments to adopt continuous cropping were found to produce increases in soil C for between 5 to $70 depending on area and degree of targeting of the payments. The most efficient, lowest cost policy is achieved when payments are targeted to land that was previously in a crop/fallow rotation. In this range, soil C sequestration appears to be competitive with C sequestered from other sources.policy design, economic efficiency, soil carbon, sequestration, valuing soil carbon, Great Plains agriculture, Resource /Energy Economics and Policy, Q2,

    ECONOMICS OF AGRICULTURAL SOIL CARBON SEQUESTRATION IN THE NORTHERN GREAT PLAINS

    Get PDF
    Under the Kyoto protocol of the United Nations Framework Convention on Climate Change the United States is charged with reducing emissions of greenhouse gases to seven percent below their 1990 levels by the period 2008-2012. These reductions could be met from many industries including agriculture. In this paper, an economic simulation model is linked to the CENTURY ecosystem model to quantify the economic efficiency of policies that might be used to sequester carbon (C) in agricultural soils in the Northern Great Plains region. Model outputs are combined to assess the costs of inducing changes in equilibrium levels of soil C through three types of policies. The first is a CRP-style policy that provides producers with per-acre payments for converting crop-land to permanent grass; the second is a policy that provides per-acre payments to all farmers that use continuous cropping, regardless of the land's cropping history; the third is a policy that provides per-acre payments for the use of continuous cropping only on land units that had previously been in a crop/fallow rotation. The analysis shows that a CRP-style policy is found to be an inefficient means to increase soil C resulting in costs that typically exceed 100perMT(metricton)ofC.Incontrast,paymentstoadoptcontinuouscroppingwerefoundtoproduceincreasesinsoilCforbetween100 per MT (metric ton) of C. In contrast, payments to adopt continuous cropping were found to produce increases in soil C for between 5 to $70/MT depending on the geographic area and degree of targeting of the payments. The most efficient, lowest cost policy is achieved when payments are targeted to land that was previously in a crop/fallow rotation. In this range, soil C sequestration appears to be competitive with C sequestered from other sources.policy design, economic efficiency, soil carbon, sequestration, valuing soil carbon, Great Plains agriculture, Environmental Economics and Policy, Q2,

    Extension rates across the northern Shanxi Grabens, China, from Quaternary geology, seismicity and geodesy

    Get PDF
    Discrepancies between geological, seismic and geodetic rates of strain can indicate that rates of crustal deformation, and hence seismic hazard, are varying through time. Previous studies in the northern Shanxi Grabens, at the northeastern corner of the Ordos Plateau in northern China, have found extension rates of anywhere between 0 and 6 mm a−1 at an azimuth of between 95° and 180°. In this paper we determine extension rates across the northern Shanxi Grabens from offset geomorphological features and a variety of Quaternary dating techniques (including new IRSL and Ar-Ar ages), a Kostrov summation using a 700 yr catalogue of historical earthquakes, and recent campaign GPS measurements. We observe good agreement between Quaternary, seismic and geodetic rates of strain, and we find that the northern Shanxi Grabens are extending at around 1–2 mm a−1 at an azimuth of ≈151°. The azimuth of extension is particularly well constrained and can be reliably inferred from catalogues of small earthquakes. We do not find evidence for any substantial variations in extension rate through time, though there is a notable seismic moment rate deficit since 1750. This deficit could indicate complex fault interactions across large regions, aseismic accommodation of deformation, or that we are quite late in the earthquake cycle with the potential for larger earthquakes in the relatively near future

    Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFκB Activity

    Get PDF
    Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease

    The Role of Clinical Supervision in Treating Clients with Antisocial Personality Disorder

    Get PDF
    Clinicians often have negative attitudes toward clients diagnosed with antisocial personality disorder (ASPD), which can sabotage treatment and lead to clinician burnout and job dissatisfaction. Researchers recommend clinicians receive regular clinical supervision; however, clinical supervision strategies and models related to working with ASPD are lacking. We identify supervisors’ primary task as exploring and improving clinicians’ attitudes toward clients having ASPD and examine this task within the discrimination model of clinical supervision. A case study is offered as an illustration for how to approach working with ASPD in supervision

    Epistemic Two-Dimensionalism and Arguments From Epistemic Misclassification

    Get PDF
    According to Epistemic Two-Dimensional Semantics (E2D), expressions have a counterfactual intension and an epistemic intension. Epistemic intensions reflect cognitive significance such that sentences with necessary epistemic intensions are a priori. We defend E2D against an influential line of criticism: arguments from epistemic misclassification. We focus in particular on the arguments of Speaks [2010] and Schroeter [2005]. Such arguments conclude that E2D is mistaken from (i) the claim that E2D is committed to classifying certain sentences as a priori, and (ii) the claim that such sentences are a posteriori. We aim to show that these arguments are unsuccessful as (i) and (ii) undercut each other. One must distinguish the general framework of E2D from a specific implementation of it. The framework is flexible enough to avoid commitment to the apriority of any particular sentence; only specific implementations are so committed. Arguments from epistemic misclassification are therefore better understood as arguments for favouring one implementation of E2D over another, rather than as refutations of E2D

    Grazing and No-Till Cropping Impacts on Nitrogen Retention in Dryland Agroecosystems

    Get PDF
    As the world\u27s population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of \u3e18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining \u3e90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses

    The state of the focus and image quality of the Spitzer Space Telescope as measured in orbit

    Get PDF
    We describe the process by which the NASA Spitzer Space Telescope (SST) Cryogenic Telescope Assembly (CTA) was brought into focus after arrival of the spacecraft in orbit. The ground rules of the mission did not allow us to make a conventional focus sweep. A strategy was developed to determine the focus position through a program of passive imaging during the observatory cool-down time period. A number of analytical diagnostic tools were developed to facilitate evaluation of the state of the CTA focus. Initially, these tools were used to establish the in-orbit focus position. These tools were then used to evaluate the effects of an initial small exploratory move that verified the health and calibration of the secondary mirror focus mechanism. A second large move of the secondary mirror was then commanded to bring the telescope into focus. We present images that show the CTA Point Spread Function (PSF) at different channel wavelengths and demonstrate that the telescope achieved diffraction limited performance at a wavelength of 5.5 μm, somewhat better than the level-one requirement
    corecore