3 research outputs found

    Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

    No full text
    Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium <i>tert</i>-butoxide (LiO<sup>t</sup>Bu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li<sub>2</sub>PO<sub>2</sub>N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10<sup>–7</sup> S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li<sup>+</sup>. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO<sub>2</sub> as the cathode and Si as the anode operating at up to 1 mA/cm<sup>2</sup>. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate

    Physical Delithiation of Epitaxial LiCoO<sub>2</sub> Battery Cathodes as a Platform for Surface Electronic Structure Investigation

    No full text
    We report a novel delithiation process for epitaxial thin films of LiCoO2(001) cathodes using only physical methods, based on ion sputtering and annealing cycles. Preferential Li sputtering followed by annealing produces a surface layer with a Li molar fraction in the range 0.5 x < 1, characterized by good crystalline quality. This delithiation procedure allows the unambiguous identification of the effects of Li extraction without chemical byproducts and experimental complications caused by electrolyte interaction with the LiCoO2 surface. An analysis by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) provides a detailed description of the delithiation process and the role of O and Co atoms in charge compensation. We observe the simultaneous formation of Co4+ ions and of holes localized near O atoms upon Li removal, while the surface shows a (2 × 1) reconstruction. The delithiation method described here can be applied to other crystalline battery elements and provide information on their properties that is otherwise difficult to obtain

    Imaging Phase Segregation in Nanoscale Li<sub><i>x</i></sub>CoO<sub>2</sub> Single Particles

    No full text
    LixCoO2 (LCO) is a common battery cathode material that has recently emerged as a promising material for other applications including electrocatalysis and as electrochemical random access memory (ECRAM). During charge–discharge cycling LCO exhibits phase transformations that are significantly complicated by electron correlation. While the bulk phase diagram for an ensemble of battery particles has been studied extensively, it remains unclear how these phases scale to nanometer dimensions and the effects of strain and diffusional anisotropy at the single-particle scale. Understanding these effects is critical to modeling battery performance and for predicting the scalability and performance of electrocatalysts and ECRAM. Here we investigate isolated, epitaxial LiCoO2 islands grown by pulsed laser deposition. After electrochemical cycling of the islands, conductive atomic force microscopy (c-AFM) is used to image the spatial distribution of conductive and insulating phases. Above 20 nm island thicknesses, we observe a kinetically arrested state in which the phase boundary is perpendicular to the Li-planes; we propose a model and present image analysis results that show smaller LCO islands have a higher conductive fraction than larger area islands, and the overall conductive fraction is consistent with the lithiation state. Thinner islands (14 nm), with a larger surface to volume ratio, are found to exhibit a striping pattern, which suggests surface energy can dominate below a critical dimension. When increasing force is applied through the AFM tip to strain the LCO islands, significant shifts in current flow are observed, and underlying mechanisms for this behavior are discussed. The c-AFM images are compared with photoemission electron microscopy images, which are used to acquire statistics across hundreds of particles. The results indicate that strain and morphology become more critical to electrochemical performance as particles approach nanometer dimensions
    corecore