408 research outputs found
Renormalization group study of interacting electrons
The renormalization-group (RG) approach proposed earlier by Shankar for
interacting spinless fermions at is extended to the case of non-zero
temperature and spin. We study a model with -invariant short-range
effective interaction and rotationally invariant Fermi surface in two and three
dimensions. We show that the Landau interaction function of the Fermi liquid,
constructed from the bare parameters of the low-energy effective action, is RG
invariant. On the other hand, the physical forward scattering vertex is found
as a stable fixed point of the RG flow. We demonstrate that in and 3, the
RG approach to this model is equivalent to Landau's mean-field treatment of the
Fermi liquid. We discuss subtleties associated with the symmetry properties of
the scattering amplitude, the Landau function and the low-energy effective
action. Applying the RG to response functions, we find the compressibility and
the spin susceptibility as fixed points.Comment: 11 pages, RevTeX 3.0, 2 PostScript figure
Anderson localization of polaron states
Using the vanishing of the typical polaron tunneling rate as an indicator of
the breakdown of itinerancy, we study the localization of polaron states in a
generic model for a disordered polaronic material. We find that extremely small
disorder causes an Anderson localization of small polaron states. However, the
ratio between the critical disorder strength needed to localize all states in
the polaron band and the renormalized bandwidth is not necessarily smaller than
for a bare electron.Comment: 4 pages, 3 figure
On the Spontaneous CP Breaking at Finite Temperature in a Nonminimal Supersymmetric Standard Model
We study the spontaneous CP breaking at finite temperature in the Higgs
sector in the Minimal Supersymmetric Standard Model with a gauge singlet. We
consider the contribution of the standard model particles and that of stops,
charginos, neutralinos, charged and neutral Higgs boson to the one-loop
effective potential. Plasma effects for all bosons are also included. Assuming
CP conservation at zero temperature, so that experimental constraints coming
from, {\it e.g.}, the electric dipole moment of the neutron are avoided, and
the electroweak phase transition to be of the first order and proceeding via
bubble nucleation, we show that spontaneous CP breaking cannot occur inside the
bubble mainly due to large effects coming from the Higgs sector. However,
spontaneous CP breaking can be present in the region of interest for the
generation of the baryon asymmetry, namely inside the bubble wall. The
important presence of very tiny explicit CP violating phases is also commented.Comment: 28 pages, 4 figures available upon request, DFPD 94/TH/38 and SISSA
94/81-A preprint
Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells
By studying the time and spatial evolution of a pulse of the spin
polarization in -type semiconductor quantum wells, we highlight the
importance of the off-diagonal spin coherence in spin diffusion and transport.
Spin oscillations and spin polarization reverse along the the direction of spin
diffusion in the absence of the applied magnetic field are predicted from our
investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Interrogating trans and sexual identities through the conceptual lens of translocational positionality
This article explores the confluence of trans identity and sexuality drawing on the concept of translocational positionality. In this discussion, a broad spectrum of gendered positionalities incorporates trans identity which, in turn, acknowledges normative male and female identities as well as non-binary ones. It is also recognised, however, that trans identity overlaps with other positionalities (pertaining to sexuality, for example) to shape social location. In seeking to understand subject positions, a translocational lens acknowledges the contextuality and temporality of social categories to offer an analysis which recognises the overlaps and differentials of co-existing positionalities. This approach enables an analysis which explores how macro, or structural, contexts shape agency (at the micro-level) and also how both are mediated by trans people's multiple and shifting positionalities. In this framing, positionality represents a meso layer between structure and agency. Four case studies are presented using data from a qualitative study which explored trans people's experiences of family, intimacy and domestic abuse. We offer an original contribution to the emerging knowledge-base on trans sexuality by presenting data from four case studies. We do so whilst innovatively applying the conceptual lens of translocational positionality to an analysis which considers macro, meso and micro levels of influence
Nontuberculous mycobacteria: I: Multicenter prevalence study in cystic fibrosis
Nontuberculous mycobacteria (NTM) are potential respiratory pathogens in cystic fibrosis (CF). To assess the species-specific prevalence and risk factors for acquisition, we conducted a prospective, cross-sectional study of the prevalence of NTM and clinical features of patients at 21 U.S. centers. Almost 10% of patients with CF who were 10 years or older were included (n = 986). The overall prevalence of NTM in sputum was 13.0% (range by center, 7-24%). Mycobacterium avium complex (72%) and Mycobacterium abscessus (16%) were the most common species. When compared with patients with CF without NTM, culture-positive subjects were older (26 vs. 22 years, p < 0.001), had a higher FEV1 (60 vs. 54%, p 0.01), higher frequency of Staphylococcus aureus (43 vs. 31%, p 0.01), and lower frequency of Pseudomonas aeruginosa (71 vs. 82%, p < 0.01). Molecular typing revealed that almost all patients within each center had unique NTM strains. In summary, NTM are common in patients with CF, but neither person-to-person nor nosocomial acquisition explained the high prevalence. Older age was the most significant predictor for isolation of NTM. The clinical significance of NTM in CF is incompletely defined, but patients with these organisms should be monitored with repeat cultures
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
- âŠ