12 research outputs found

    Inherited physical capacity: Widening divergence from young to adult to old

    Get PDF
    Cardiorespiratory performance segregates into rat strains of inherited low- and high-capacity runners (LCRs and HCRs); during adulthood, this segregation remains stable, but widens in senescence and is followed by segregated function, health, and mortality. However, this segregation has not been investigated prior to adulthood. We, therefore, assessed cardiorespiratory performance and cardiac cell (cardiomyocyte) structure–function in 1- and 4-month-old LCRs and HCRs. Maximal oxygen uptake was 23% less in LCRs at 1-month compared to HCRs at 1-month, and 72% less at 4 months. Cardiomyocyte contractility was 37−56% decreased, and Ca2+ release was 34−62% decreased, in 1- and 4-month LCRs versus HCRs. This occurred because HCRs had improved contractility and Ca2+ release during maturation, whereas LCRs did not. In quiescent cardiomyocytes, LCRs displayed 180% and 297% more Ca2+ sparks and 91% and 38% more Ca2+ waves at 1 and 4 months versus HCRs. Cell sizes were not different between LCRs and HCRs, but LCRs showed reduced transverse-tubules versus HCRs, though no discrepant transverse-tubule generation occurred during maturation. In conclusion, LCRs show reduced scores for aerobic capacity and cardiomyocyte structure–function compared to HCRs and there is a widening divergence between LCRs and HCRs during juvenile to near-adult maturation

    Cardiac hypertrophy, physiological

    No full text
    No abstract available

    Ubiquitin-proteasome-system and enzymes of energy metabolism in skeletal muscle of patients with HFpEF and HFrEF

    No full text
    Abstract Background Skeletal muscle (SM) alterations contribute to exercise intolerance in heart failure patients with preserved (HFpEF) or reduced (HFrEF) left ventricular ejection fraction (LVEF). Protein degradation via the ubiquitin‐proteasome‐system (UPS), nuclear apoptosis, and reduced mitochondrial energy supply is associated with SM weakness in HFrEF. These mechanisms are incompletely studied in HFpEF, and a direct comparison between these groups is missing. Methods and results Patients with HFpEF (LVEF ≥ 50%, septal E/e′ > 15 or >8 and NT‐proBNP > 220 pg/mL, n = 20), HFrEF (LVEF ≤ 35%, n = 20) and sedentary control subjects (Con, n = 12) were studied. Inflammatory markers were measured in serum, and markers of the UPS, nuclear apoptosis, and energy metabolism were determined in percutaneous SM biopsies. Both HFpEF and HFrEF showed increased proteolysis (MuRF‐1 protein expression, ubiquitination, and proteasome activity) with proteasome activity significantly related to interleukin‐6. Proteolysis was more pronounced in patients with lower exercise capacity as indicated by peak oxygen uptake in per cent predicted below the median. Markers of apoptosis did not differ between groups. Mitochondrial energy supply was reduced in HFpEF and HFrEF (complex‐I activity: −31% and −53%; malate dehydrogenase activity: −20% and −29%; both P < 0.05 vs. Con). In contrast, short‐term energy supply via creatine kinase was increased in HFpEF but decreased in HFrEF (47% and −45%; P < 0.05 vs. Con). Conclusions Similarly to HFrEF, skeletal muscle in HFpEF is characterized by increased proteolysis linked to systemic inflammation and reduced exercise capacity. Energy metabolism is disturbed in both groups; however, its regulation seems to be severity‐dependent
    corecore