5 research outputs found

    Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine

    No full text
    Abstract Background Prostatic acid phosphatase (PAP) is a prostate tumor antigen, and the target of the only FDA-approved anti-tumor vaccine, sipuleucel-T. We have previously reported in two clinical trials that a DNA vaccine encoding PAP (pTVG-HP) could elicit PAP-specific, Th1-biased T cells in patients with PSA-recurrent prostate cancer. In the current pilot trial we sought to evaluate whether this vaccine could augment PAP-specific immunity when used as a booster to immunization with sipuleucel-T in patients with metastatic, castration-resistant prostate cancer (mCRPC). Methods Eigthteen patients with mCRPC were randomized to receive sipuleucel-T alone or followed by intradermal immunization with pTVG-HP DNA vaccine. Patients were followed for time to progression, and immune monitoring was conducted at defined intervals. Results Overall, patients were followed for a median of 24 months. 11/18 patients completed treatments as per protocol. No treatment-associated events > grade 2 were observed. Th1-biased PAP-specific T-cell responses were detected in 11/18 individuals, and were not statistically different between study arms. Higher titer antibody responses to PAP were detectable in patients who received pTVG-HP booster immunizations. Median time to progression was less than 6 months and not statistically different between study arms. The median overall survival for all patients was 28 months. Conclusions These findings suggest that prime-boost vaccination can augment and diversify the type of immunity elicited with anti-tumor vaccination in terms of T-cell and humoral immunity. Future studies will explore DNA as priming immunization rather than a booster immunization. Trial registration NCT01706458

    Phase 2 trial of a DNA vaccine (pTVG-HP) and nivolumab in patients with castration-sensitive non-metastatic (M0) prostate cancer

    No full text
    Purpose We have previously reported that a plasmid DNA vaccine encoding prostatic acid phosphatase (pTVG-HP) had greater clinical activity when given in combination with pembrolizumab to patients with metastatic, castration-resistant prostate cancer. The current trial was conducted to evaluate vaccination with PD-1 blockade, using nivolumab, in patients with early, recurrent (M0) prostate cancer.Methods Patients with M0 prostate cancer were treated with pTVG-HP (100 µg administered intradermally) and nivolumab (240 mg intravenous infusion) every 2 weeks for 3 months, and then every 4 weeks for 1 year of total treatment. Patients were then followed for an additional year off treatment. The primary objectives were safety and complete prostate-specific antigen (PSA) response (PSA<0.2 ng/mL).Results 19 patients were enrolled. No patients met the primary endpoint of complete PSA response; however, 4/19 (21%) patients had a PSA decline >50%. Median PSA doubling times were 5.9 months pretreatment, 25.6 months on-treatment (p=0.001), and 9.0 months in the subsequent year off-treatment. The overall median radiographic progression-free survival was not reached. Grade 3 or 4 events included adrenal insufficiency, fatigue, lymphopenia, and increased amylase/lipase. 9/19 (47%) patients developed immune-related adverse effects (irAE). The development of irAE and increased CXCL9 were associated with increased PSA doubling time. Quantitative NaF PET/CT imaging showed the resolution of subclinical lesions along with the development of new lesions at each time point.Conclusions In this population, combining nivolumab with pTVG-HP vaccination was safe, and immunologically active, prolonged the time to disease progression, but did not eradicate disease. Quantitative imaging suggested that additional treatments targeting mechanisms of resistance may be required to eliminate tumors.Trial registration number NCT03600350

    Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC)

    No full text
    Background We previously reported a trial using a DNA vaccine encoding prostatic acid phosphatase (MVI-816, pTVG-HP), given over 12 weeks concurrently or sequentially with pembrolizumab, in patients with mCRPC. We report the final analysis of this trial following two additional treatment arms in which patients with mCRPC continued concurrent treatment until progression.Materials and methods Patients with mCRPC were treated with MVI-816 and pembrolizumab every 3 weeks (arm 3, n=20) or MVI-816 every 2 weeks and pembrolizumab every 4 weeks (arm 4, n=20). The primary objectives were safety, 6-month progression-free survival (PFS), median time to radiographic progression, and objective response rates. Secondary objectives included immunological evaluations.Results In 25 patients with measurable disease, there were no complete response and one confirmed partial response in a patient who subsequently found to have an MSIhi tumor. 4/40 patients (10%) had a prostate-specific antigen decline >50%. The estimated overall radiographic PFS rate at 6 months was 47.2% (44.4% arm 3, 61.5% arm 4). Accounting for all off-study events, overall median time on treatment was 5.6 months (95% CI: 5.4 to 10.8 months), 5.6 months for arm 3 and 8.1 months for arm 4 (p=0.64). Thirty-two per cent of patients remained on trial beyond 6 months without progression. Median overall survival was 22.9 (95% CI: 16.2 to 25.6) months. One grade 4 event (hyperglycemia) was observed. Immune-related adverse events (irAEs) >grade 1 were observed in 42% of patients overall. Interferon-γ and/or granzyme B immune response to prostatic acid phosphatase was detected in 2/20 patients in arm 3 and 6/20 patients in arm 4. Plasma cytokines associated with immune activation and CD8+ T-cell recruitment were augmented at weeks 6 and 12. The development of irAE was significantly associated with a prolonged time on treatment (HR=0.42, p=0.003). Baseline DNA homologous recombination repair mutations were not associated with longer time to progression.Conclusions Findings here demonstrate that combining programmed cell death 1 blockade with MVI-816 is safe, can augment tumor-specific T cells, and can result in a favorable 6-month disease control rate. Correlative studies suggest T-cell activation by vaccination is critical to the mechanism of action of this combination. Future randomized clinical trials are needed to validate these findings.Trial registration number NCT02499835

    Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC)

    No full text
    Metastatic castration-resistant prostate cancer (mCRPC) is a challenging disease to treat, with poor outcomes for patients. One antitumor vaccine, sipuleucel-T, has been approved as a treatment for mCRPC. DNA vaccines are another form of immunotherapy under investigation. DNA immunizations elicit antigen-specific T cells that cause tumor cell lysis, which should translate to meaningful clinical responses. They are easily amenable to design alterations, scalable for large-scale manufacturing, and thermo-stable for easy transport and distribution. Hence, they offer advantages over other vaccine formulations. However, clinical trials with DNA vaccines as a monotherapy have shown only modest clinical effects against tumors. Standard therapies for CRPC including androgen-targeted therapies, radiation therapy and chemotherapy all have immunomodulatory effects, which combined with immunotherapies such as DNA vaccines, could potentially improve treatment. In addition, many investigational drugs are being developed which can augment antitumor immunity, and together with DNA vaccines can further enhance antitumor responses in preclinical models. We reviewed the literature available prior to July 2020 exploring the use of DNA vaccines in the treatment of prostate cancer. We also examined various approved and experimental therapies that could be combined with DNA vaccines to potentially improve their antitumor efficacy as treatments for mCRPC
    corecore