43 research outputs found

    Chemotherapy-induced nausea and vomiting in daily clinical practice: a community hospital-based study

    Get PDF
    Background Chemotherapy-induced nausea and vomiting (CINV) are major adverse effects of cancer chemotherapy. This study investigated: (1) the impact of CINV on patients' health-related quality of life (HRQL) in daily clinical practice; (2) the association between patient characteristics and type of antiemetics and CINV; and (3) the role of CINV in physicians' decisions to modify antiemetic treatment. Patients and methods This prospective, multicenter study was conducted in nine general hospitals in the Netherlands. During three consecutive chemotherapy cycles, patients used a diary to record episodes of nausea, vomiting and antiemetic use. For each cycle, these ratings were made 1 day prior to and 7 days after having received chemotherapy. The influence of CINV on patients' HRQL was evaluated with the Functional Living Index-Emesis (FLIE) questionnaire at day 6 of each treatment cycle. (Changes in) antiemetic use were recorded by the treating nurse. Patient inclusion took place between May 2005 and May 2007. Results Two hundred seventy-seven patients were enrolled in the study. Acute and delayed nausea during the first treatment cycle was reported by 39% and 68% of the patients, respectively. The comparable figures for acute and delayed vomiting were 12% and 23%. During the first and subsequent treatment cycle, approximately one-third of the patients indicated that CINV had a substantial impact on their daily lives. Female patients and younger patients reported significantly more CINV than male and older patients. At all treatment cycles, patients receiving treatment with moderately emetogenic chemotherapy, containing anthracycline, reported more acute nausea than patients receiving highly emetogenic chemotherapy. Acute vomiting was associated significantly with change in (i.e., additional) antiemetic treatment. Delayed CINV did not influence antiemetic treatment. Conclusion CINV continues to be a problem that adversely affects the daily lives of patients. CINV is worse in women and in younger patients. In daily clinical practice, acute CINV, but not delayed CINV, results in changes in antiemetic treatment. In view of the effects of not only acute, but also delayed CINV on daily life, more attention should be paid to adjustment of antiemetic treatment to cover CINV complaints, later during the chemotherapy cycle

    Anti-PD-1 increases the clonality and activity of tumor infiltrating antigen specific T cells induced by a potent immune therapy consisting of vaccine and metronomic cyclophosphamide

    Full text link
    BACKGROUND: Future cancer immunotherapies will combine multiple treatments to generate functional immune responses to cancer antigens through synergistic, multi-modal mechanisms. In this study we explored the combination of three distinct immunotherapies: a class I restricted peptide-based cancer vaccine, metronomic cyclophosphamide (mCPA) and anti-PD-1 treatment in a murine tumor model expressing HPV16 E7 (C3). METHODS: Mice were implanted with C3 tumors subcutaneously. Tumor bearing mice were treated with mCPA (20 mg/kg/day PO) for seven continuous days on alternating weeks, vaccinated with HPV16 E7(49-57) peptide antigen formulated in the DepoVax (DPX) adjuvanting platform every second week, and administered anti-PD-1 (200 μg/dose IP) after each vaccination. Efficacy was measured by following tumor growth and survival. Immunogenicity was measured by IFN-γ ELISpot of spleen, vaccine draining lymph nodes and tumor draining lymph nodes. Tumor infiltration was measured by flow cytometry for CD8α(+) peptide-specific T cells and RT-qPCR for cytotoxic proteins. The clonality of tumor infiltrating T cells was measured by TCRβ sequencing using genomic DNA. RESULTS: Untreated C3 tumors had low expression of PD-L1 in vivo and anti-PD-1 therapy alone provided no protection from tumor growth. Treatment with DPX/mCPA could delay tumor growth, and tri-therapy with DPX/mCPA/anti-PD-1 provided long-term control of tumors. We found that treatment with DPX/mCPA/anti-PD-1 enhanced systemic antigen-specific immune responses detected in the spleen as determined by IFN-γ ELISpot compared to those in the DPX/mCPA group, but immune responses in tumor-draining lymph nodes were not increased. Although no increases in antigen-specific CD8α(+) TILs could be detected, there was a trend for increased expression of cytotoxic genes within the tumor microenvironment as well as an increase in clonality in mice treated with DPX/mCPA/anti-PD-1 compared to those with anti-PD-1 alone or DPX/mCPA. Using a library of antigen-specific CD8α(+) T cell clones, we found that antigen-specific clones were more frequently expanded in the DPX/mCPA/anti-PD-1 treated group. CONCLUSIONS: These results demonstrate how the efficacy of anti-PD-1 may be improved by combination with a potent and targeted T cell activating immune therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40425-016-0169-2) contains supplementary material, which is available to authorized users

    Survival of metastatic melanoma patients after dendritic cell vaccination correlates with expression of leukocyte phosphatidylethanolamine-binding protein 1/Raf kinase inhibitory protein

    Get PDF
    Immunotherapy for metastatic melanoma offers great promise but, to date, only a subset of patients have responded. There is an urgent need to identify ways of allocating patients to the most beneficial therapy, to increase survival and decrease therapy-associated morbidity and costs. Blood-based biomarkers are of particular interest because of their straightforward implementation in routine clinical care. We sought to identify markers for dendritic cell (DC) vaccine-based immunotherapy against metastatic melanoma through gene expression analysis of peripheral blood mononuclear cells. A large-scale microarray analysis of 74 samples from two treatment centers, taken directly after the first round of DC vaccination, was performed. We found that phosphatidylethanolamine binding protein 1 (_PEBP1_)/ Raf Kinase inhibitory protein (RKIP) expression can be used to identify a significant proportion of patients who performed poorly after DC vaccination. This result was validated by q-PCR analysis on blood samples from a second cohort of 95 patients treated with DC vaccination in four different centers. We conclude that low _PEBP1_ expression correlates with poor overall survival after DC vaccination. Intriguingly, this was only the case for expression of _PEBP1_ after, but not prior to, DC vaccination. Moreover, the change in _PEBP1_ expression upon vaccination correlated well with survival. Further analyses revealed that _PEBP1_ expression positively correlated with genes involved in T cell responses but inversely correlated with genes associated with myeloid cells and aberrant inflammation including _STAT3, NOTCH1,_ and _MAPK1_. Concordantly, _PEBP1_ inversely correlated with the myeloid/ lymphoid-ratio and was suppressed in patients suffering from chronic inflammatory disease

    The twisted survivin connection to angiogenesis

    Get PDF
    corecore