7 research outputs found

    Vis-NIR Hyperspectral Imaging for Online Quality Evaluation during Food Processing: A Case Study of Hot Air Drying of Purple-Speckled Cocoyam (Colocasia esculenta (L.) Schott)

    Get PDF
    In this study, hyperspectral imaging (HSI) and chemometrics were implemented to develop prediction models for moisture, colour, chemical and structural attributes of purple-speckled cocoyam slices subjected to hot-air drying. Since HSI systems are costly and computationally demanding, the selection of a narrow band of wavelengths can enable the utilisation of simpler multispectral systems. In this study, 19 optimal wavelengths in the spectral range 400–1700 nm were selected using PLS-BETA and PLS-VIP feature selection methods. Prediction models for the studied quality attributes were developed from the 19 wavelengths. Excellent prediction performance (RMSEP 0.90, RPDP > 3.5) was obtained for MC, RR, VS and aw. Good prediction performance (RMSEP 2.0) was obtained for PC, BI, CIELAB b*, chroma, TFC, TAA and hue angle. Additionally, PPA and WI were also predicted successfully. An assessment of the agreement between predictions from the non-invasive hyperspectral imaging technique and experimental results from the routine laboratory methods established the potential of the HSI technique to replace or be used interchangeably with laboratory measurements. Additionally, a comparison of full-spectrum model results and the reduced models demonstrated the potential replacement of HSI with simpler imaging systems.Peer Reviewe

    Comparison between Hyperspectral Imaging and Chemical Analysis of Polyphenol Oxidase Activity on Fresh-Cut Apple Slices

    Get PDF
    The assessment of the quality of fresh-cut apple slices is important for processing, storage, market value, and consumption. Determination of polyphenol oxidase activity (PPO) in apples is critical for controlling the quality of the final product (i.e., dried apples and juices). Hyperspectral imaging (HSI) is a nondestructive, noncontact, and rapid food quality assessment technique. It has the potential to detect physical and chemical quality attributes of foods such as PPO of apple. The aim of this study was to investigate the suitability of HSI in the visible and near-infrared (VIS-NIR) range for indirect assessment of PPO activity of fresh-cut apple slices. Apple slices of two cultivars (cv. Golden Delicious and Elstar) were used to build a robust detection algorithm, which is independent of cultivars and applied treatments. Partial least squares (PLS) regression using the 7-fold cross-validation method and method comparison analysis (Bland–Altman plot, Passing–Bablok regression, and Deming regression) were performed. The 95% confidence interval (CI) bands for the Bland–Altman analysis between the methods were −4.19 and 13.11, and the mean difference was 3.7e−12. The Passing–Bablok regression had a slope of 0.8 and an intercept of 7.6. The slope of the Deming regression was 0.8 within the CI bands of 0.56 and 1.10. These results show acceptable performance and no significant deviation from linearity. Hence, the results demonstrated the feasibility of HSI as an indirect alternative to the standard chemical analysis of PPO enzyme activity

    Influence of Brewer’s Spent Grain Compounds on Glucose Metabolism Enzymes

    No full text
    With a yearly production of about 39 million tons, brewer’s spent grain (BSG) is the most abundant brewing industry byproduct. Because it is rich in fiber and protein, it is commonly used as cattle feed but could also be used within the human diet. Additionally, it contains many bioactive substances such as hydroxycinnamic acids that are known to be antioxidants and potent inhibitors of enzymes of glucose metabolism. Therefore, our study aim was to prepare different extracts—A1-A7 (solid-liquid extraction with 60% acetone); HE1-HE6 (alkaline hydrolysis followed by ethyl acetate extraction) and HA1-HA3 (60% acetone extraction of alkaline residue)—from various BSGs which were characterized for their total phenolic (TPC) and total flavonoid (TFC) contents, before conducting in vitro studies on their effects on the glucose metabolism enzymes α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPP IV), and glycogen phosphorylase α (GPα). Depending on the extraction procedures, TPCs ranged from 20–350 μg gallic acid equivalents/mg extract and TFCs were as high as 94 μg catechin equivalents/mg extract. Strong inhibition of glucose metabolism enzymes was also observed: the IC50 values for α-glucosidase inhibition ranged from 67.4 ± 8.1 μg/mL to 268.1 ± 29.4 μg/mL, for DPP IV inhibition they ranged from 290.6 ± 97.4 to 778.4 ± 95.5 μg/mL and for GPα enzyme inhibition from 12.6 ± 1.1 to 261 ± 6 μg/mL. However, the extracts did not strongly inhibit α-amylase. In general, the A extracts from solid-liquid extraction with 60% acetone showed stronger inhibitory potential towards α-glucosidase and GPα than other extracts whereby no correlation with TPC or TFC were observed. Additionally, DPP IV was mainly inhibited by HE extracts but the effect was not of biological relevance. Our results show that BSG is a potent source of α-glucosidase and GPα inhibitors, but further research is needed to identify these bioactive compounds within BSG extracts focusing on extracts from solid-liquid extraction with 60% acetone

    Influence of Brewer’s Spent Grain Compounds on Glucose Metabolism Enzymes

    No full text
    With a yearly production of about 39 million tons, brewer’s spent grain (BSG) is the most abundant brewing industry byproduct. Because it is rich in fiber and protein, it is commonly used as cattle feed but could also be used within the human diet. Additionally, it contains many bioactive substances such as hydroxycinnamic acids that are known to be antioxidants and potent inhibitors of enzymes of glucose metabolism. Therefore, our study aim was to prepare different extracts—A1-A7 (solid-liquid extraction with 60% acetone); HE1-HE6 (alkaline hydrolysis followed by ethyl acetate extraction) and HA1-HA3 (60% acetone extraction of alkaline residue)—from various BSGs which were characterized for their total phenolic (TPC) and total flavonoid (TFC) contents, before conducting in vitro studies on their effects on the glucose metabolism enzymes α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPP IV), and glycogen phosphorylase α (GPα). Depending on the extraction procedures, TPCs ranged from 20–350 μg gallic acid equivalents/mg extract and TFCs were as high as 94 μg catechin equivalents/mg extract. Strong inhibition of glucose metabolism enzymes was also observed: the IC50 values for α-glucosidase inhibition ranged from 67.4 ± 8.1 μg/mL to 268.1 ± 29.4 μg/mL, for DPP IV inhibition they ranged from 290.6 ± 97.4 to 778.4 ± 95.5 μg/mL and for GPα enzyme inhibition from 12.6 ± 1.1 to 261 ± 6 μg/mL. However, the extracts did not strongly inhibit α-amylase. In general, the A extracts from solid-liquid extraction with 60% acetone showed stronger inhibitory potential towards α-glucosidase and GPα than other extracts whereby no correlation with TPC or TFC were observed. Additionally, DPP IV was mainly inhibited by HE extracts but the effect was not of biological relevance. Our results show that BSG is a potent source of α-glucosidase and GPα inhibitors, but further research is needed to identify these bioactive compounds within BSG extracts focusing on extracts from solid-liquid extraction with 60% acetone
    corecore