11 research outputs found

    Commercial articulated collaborative in situ 3D bioprinter for skin wound healing

    Get PDF
    In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.publishersversionPeer reviewe

    Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering

    Get PDF
    The concept of “lockyballs” or interlockable mini-scaffolds fabricated by two-photon polymerization from biodegradable polymers for the encagement of tissue spheroids and their delivery into the desired location in the human body has been recently introduced. In order to improve control of delivery, positioning, and assembly of mini-scaffolds with tissue spheroids inside, they must be functionalized. This review describes the design, fabrication, and functionalization of mini-scaffolds as well as perspectives on their application in tissue engineering for precisely controlled cell and mini-tissue delivery and patterning. The development of functionalized mini-scaffolds advances the original concept of “lockyballs” and opens exciting new prospectives for mini-scaffolds’ applications in tissue engineering and regenerative medicine and their eventual clinical translation

    Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing

    No full text
    The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus

    Combined Impact of Magnetic Force and Spaceflight Conditions on Escherichia coli Physiology

    No full text
    Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows

    Bioprinting of functional vascularized mouse thyroid gland construct.

    No full text
    Bioprinting can be defined as additive biofabrication of 3D tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. Thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS), as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modelling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, endothelial cells from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of thyroid gland construct, we depleted endogenous EC from thyroid spheroids before bioprinting. EC from allantoic spheroids completely revascularized depleted thyroid tissue. Cultured bioprinted construct was functional as it could normalize blood thyroxin levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents further advance in bioprinting technology exploring self-assembling properties of tissue spheroids
    corecore