8 research outputs found

    Axillary lymph node imaging in mRNA, vector-based, and mix-and-match COVID-19 vaccine recipients: ultrasound features

    Get PDF
    Objectives To assess ultrasound characteristics of ipsilateral axillary lymph nodes after two doses of four different COVID-19 vaccination protocols, to determine whether these parameters differed with age, and to describe how they changed on follow-up imaging. Methods A total of 247 volunteer employees from our center who had received two doses of COVID-19 vaccination were recruited and followed prospectively. Axillary ultrasound of the ipsilateral vaccinated arm was performed the week after receiving the second dose to analyze lymph node features (number, long-axis, cortical thickness, morphology, and vascular imaging). Axillary lymphadenopathy resulting from four vaccination protocols—mRNA (BNT162b2, mRNA-1273), ChAdOx1-S, and mix-and-match—was compared. Analysis was conducted using the Kruskal-Wallis test and post hoc analysis with Bonferroni corrections. Nodal reactogenicity was evaluated for two age groups: young (< 45 years old) and middle-aged ( ≥ 45 years old). All parameters were compared between both groups using an unpaired-sample Student t test. A p value < 0.05 was considered statistically significant. Results Significantly higher values for total number of visible nodes, cortical thickness, Bedi’s classification (p < 0.001), and vascularity (p < 0.05) were observed in mRNA vaccine recipients compared to full ChAdOx1-S protocol recipients. Moreover, mix-and-match protocol recipients showed greater nodal cortical thickness and higher Bedi’s classification than full ChAdOx1-S recipients (p < 0.001). Analyses between age groups revealed greater cortical thickness, Bedi’s classification, and color Doppler signal in younger patients (p < 0.05). Conclusions Nodal parameters of Bedi’s classification and cortical thickness were more often increased in mRNA and mix-andmatch vaccine recipients when compared to ChAdOx1-S vaccine alone, especially in younger patients. Key Points • Hyperplastic lymphadenopathy was observed more frequently in mRNA and mix-and-match vaccine protocols compared to full vector-based vaccination. • Higher values for cortical thickness, Bedi’s classification, and color Doppler signal parameters were identified in younger patients. • Observed lymph node findings normalized in greater than 80% of patients by the third month following vaccination

    Unilateral axillary adenopathy induced by COVID-19 vaccine: US follow-up evaluation

    Get PDF
    Objectives This study was conducted in order to investigate COVID-19 vaccine influence on unilateral axillary lymph nodes, comparing nodal basal features with their characteristics after the first and second vaccination dose. Methods Ninety-one volunteer employees from our center who participated in the BNT162b2 (Pfizer-BioNTech) vaccination campaign were prospectively recruited. A total of three axillary ultrasound evaluations of the ipsilateral vaccinated arm were performed: before vaccination, the week after the first dose and the week after the second dose. The following findings were recorded: the total number of visible nodes, the maximum measurements of the diameter and cortex, Bedi’s classification, and color Doppler evaluation. The collected data were compared using paired-sample Student’s t-test for quantitative continuous variables and Wilcoxon rank-sum test for ordinal variables. Additional analyses were performed after classifying patients according to the previous history of COVID-19 disease. Differences among both groups were evaluated with the Mann–Whitney U test. Variables with a p value < 0.05 were considered statistically significant. Results Comparative analyses between the three US examinations showed a statistically significant augmentation of total visible nodes, maximum diameter, cortical thickness, grade of Bedi’s classification, and Doppler signal (p < 0.001). Analyses between patients with and without previous COVID-19 infection showed a higher lymph node response in naïve patients compared to those who were previously infected. Conclusions According to our results, both doses of COVID-19 vaccine induced an increase of all axillary lymph node parameters with statistically significant differences, especially in coronavirus-naïve patients

    Unilateral axillary adenopathy induced by COVID-19 vaccine: US follow-up evaluation

    No full text
    Objectives This study was conducted in order to investigate COVID-19 vaccine influence on unilateral axillary lymph nodes, comparing nodal basal features with their characteristics after the first and second vaccination dose. Methods Ninety-one volunteer employees from our center who participated in the BNT162b2 (Pfizer-BioNTech) vaccination campaign were prospectively recruited. A total of three axillary ultrasound evaluations of the ipsilateral vaccinated arm were performed: before vaccination, the week after the first dose and the week after the second dose. The following findings were recorded: the total number of visible nodes, the maximum measurements of the diameter and cortex, Bedi’s classification, and color Doppler evaluation. The collected data were compared using paired-sample Student’s t-test for quantitative continuous variables and Wilcoxon rank-sum test for ordinal variables. Additional analyses were performed after classifying patients according to the previous history of COVID-19 disease. Differences among both groups were evaluated with the Mann–Whitney U test. Variables with a p value < 0.05 were considered statistically significant. Results Comparative analyses between the three US examinations showed a statistically significant augmentation of total visible nodes, maximum diameter, cortical thickness, grade of Bedi’s classification, and Doppler signal (p < 0.001). Analyses between patients with and without previous COVID-19 infection showed a higher lymph node response in naïve patients compared to those who were previously infected. Conclusions According to our results, both doses of COVID-19 vaccine induced an increase of all axillary lymph node parameters with statistically significant differences, especially in coronavirus-naïve patients

    Axillary lymph node imaging in mRNA, vector-based, and mix-and-match COVID-19 vaccine recipients: ultrasound features

    No full text
    Objectives To assess ultrasound characteristics of ipsilateral axillary lymph nodes after two doses of four different COVID-19 vaccination protocols, to determine whether these parameters differed with age, and to describe how they changed on follow-up imaging. Methods A total of 247 volunteer employees from our center who had received two doses of COVID-19 vaccination were recruited and followed prospectively. Axillary ultrasound of the ipsilateral vaccinated arm was performed the week after receiving the second dose to analyze lymph node features (number, long-axis, cortical thickness, morphology, and vascular imaging). Axillary lymphadenopathy resulting from four vaccination protocols—mRNA (BNT162b2, mRNA-1273), ChAdOx1-S, and mix-and-match—was compared. Analysis was conducted using the Kruskal-Wallis test and post hoc analysis with Bonferroni corrections. Nodal reactogenicity was evaluated for two age groups: young (< 45 years old) and middle-aged ( ≥ 45 years old). All parameters were compared between both groups using an unpaired-sample Student t test. A p value < 0.05 was considered statistically significant. Results Significantly higher values for total number of visible nodes, cortical thickness, Bedi’s classification (p < 0.001), and vascularity (p < 0.05) were observed in mRNA vaccine recipients compared to full ChAdOx1-S protocol recipients. Moreover, mix-and-match protocol recipients showed greater nodal cortical thickness and higher Bedi’s classification than full ChAdOx1-S recipients (p < 0.001). Analyses between age groups revealed greater cortical thickness, Bedi’s classification, and color Doppler signal in younger patients (p < 0.05). Conclusions Nodal parameters of Bedi’s classification and cortical thickness were more often increased in mRNA and mix-andmatch vaccine recipients when compared to ChAdOx1-S vaccine alone, especially in younger patients. Key Points • Hyperplastic lymphadenopathy was observed more frequently in mRNA and mix-and-match vaccine protocols compared to full vector-based vaccination. • Higher values for cortical thickness, Bedi’s classification, and color Doppler signal parameters were identified in younger patients. • Observed lymph node findings normalized in greater than 80% of patients by the third month following vaccination

    Prediction of effective humoral response to SARS‑CoV‑2 vaccines in healthy subjects by cortical thickness of post‑vaccination reactive lymphadenopathy

    No full text
    Purpose To study the association between ultrasound cortical thickness in reactive post-vaccination lymph nodes and the elicited humoral response and to evaluate the performance of cortical thickness as a predictor of vaccine effectiveness in patients with and without a previous history of COVID-19 infection. Methods A total of 156 healthy volunteers were recruited and followed prospectively after receiving two COVID-19 vaccination doses using different protocols. Within a week after receiving the second dose, an axillary ultrasound of the ipsilateral vaccinated arm was performed, and serial post-vaccination serologic tests (PVST) were collected. Maximum cortical thickness was chosen as a nodal feature to analyze association with humoral immunity. Total antibodies quantified during consecutive PVST in previously-infected patients and in coronavirus-naïve volunteers were compared (Mann–Whitney U test). The association between hyperplastic-reactive lymph nodes and effective humoral response was studied (odds ratio). The performance of cortical thickness in detecting vaccination effectiveness was evaluated (area under the ROC curve). Results Significantly higher values for total antibodies were observed in volunteers with a previous history of COVID-19 infection (p < 0.001). The odds ratio associating immunized coronavirus-naïve volunteers after 90 and 180 days of the second dose with a cortical thickness ≥ 3 mm was statistically significant (95% CI 1.52–6.97 and 95% CI 1.47–7.29, respectively). The best AUC result was obtained comparing antibody secretion of coronavirus-naïve volunteers at 180 days (0.738). Conclusions Ultrasound cortical thickness of reactive lymph nodes in coronavirus-naïve patients may reflect antibody production and a long-term effective humoral response elicited by vaccination. Clinical relevance statement In coronavirus-naïve patients, ultrasound cortical thickness of post-vaccination reactive lymphadenopathy shows a positive association with protective antibody titers against SARS-CoV-2, especially in the long term, providing new insights into previous publications

    Assessing the impact of the addition of dendritic cell vaccination to neoadjuvant chemotherapy in breast cancer patients: A model-based characterization approach

    No full text
    Aims: Immunotherapy is a rising alternative to traditional treatment in breast cancer (BC) patients in order to transform cold into hot immune enriched tumours and improve responses and outcome. A computational modelling approach was applied to quantify modulation effects of immunotherapy and chemotherapy response on tumour shrinkage and progression-free survival (PFS) in naïve BC patients. Methods: Eighty-three Her2-negative BC patients were recruited for neoadjuvant chemotherapy with or without immunotherapy based on dendritic cell vaccination. Sequential tumour size measurements were modelled using nonlinear mixed effects modelling and linked to PFS. Data from another set of patients (n = 111) were used to validate the model. Results: Tumour size profiles over time were linked to biomarker dynamics and PFS. The immunotherapy effect was related to tumour shrinkage (P < .05), with the shrinkage 17% (95% confidence interval: 2-23%) being higher in vaccinated patients, confirmed by the finding that pathological complete response rates in the breast were higher in the vaccinated compared to the control group (25.6% vs 13.6%; P = .04). The whole tumour shrinkage time profile was the major prognostic factor associated to PFS (P < .05), and therefore, immunotherapy influences indirectly on PFS, showing a trend in decreasing the probability of progression with increased vaccine effects. Tumour subtype was also associated with PFS (P < .05), showing that luminal A BC patients have better prognosis. Conclusions: Dendritic cell-based immunotherapy is effective in decreasing tumour size. The semi-mechanistic validated model presented allows the quantification of the immunotherapy treatment effects on tumour shrinkage and establishes the relationship between the dynamics of tumour size and PFS

    MRI fused with prone FDG PET/CT improves the primary tumour staging of patients with breast cancer

    No full text
    Objective: Our aim was to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) fused with prone 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in primary tumour staging of patients with breast cancer. Methods: This retrospective study evaluated 45 women with 49 pathologically proven breast carcinomas. MRI and prone PET-CT scans with time-of-flight and point-spread-function reconstruction were performed with the same dedicated breast coil. The studies were assessed by a radiologist and a nuclear medicine physician, and evaluation of fused images was made by consensus. The final diagnosis was based on pathology (90 lesions) or follow-up ≥ 24 months (17 lesions). Results: The study assessed 72 malignant and 35 benign lesions with a median size of 1.8 cm (range 0.3-8.4 cm): 31 focal, nine multifocal and nine multicentric cases. In lesion-by-lesion analysis, sensitivity, specificity, positive and negative predictive values were 97%, 80%, 91% and 93% for MRI, 96%, 71%, 87%, and 89% for prone PET, and 97%. 94%, 97% and 94% for MRI fused with PET. Areas under the curve (AUC) were 0.953, 0.850, and 0.983, respectively (p < 0.01). Conclusions: MRI fused with FDG-PET is more accurate than FDG-PET in primary tumour staging of breast cancer patients and increases the specificity of MRI

    Minimally invasive tumor bed implant (MITBI) and peri-operative high-dose-rate brachytherapy (PHDRBT) for accelerated minimal breast irradiation (AMBI) or anticipated boost (A-PHDRBT-boost) in breast-conserving surgery for ductal carcinoma in situ

    Get PDF
    Purpose: To evaluate our institutional experience of minimally invasive tumor bed implantation (MITBI) during breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS) to deliver peri-operative high-dose-rate brachytherapy (PHDRBT) as accelerated minimal breast irradiation (AMBI) or anticipated boost (A-PHDRBT-boost). Material and methods: Patients older than 40, with clinical and radiological unifocal DCIS < 3 cm were considered potential candidates for accelerated partial breast irradiation (APBI) and were implanted during BCS using MITBItechnique. Patients who in final pathology reports showed free margins and no other microscopic tumor foci, received AMBI with PHDRBT (3.4 Gy BID in 5 days). Patients with adverse features received A-PHDRBT-boost with post-operative external beam radiotherapy (EBRT). Results: Forty-one patients were implanted, and 36 were treated and analyzed. According to final pathology, 24 (67%) patients were suitable for AMBI and 12 (33%) were qualified for A-PHDRBT-boost. Reoperation rate for those with clear margins was 16.6% (6/36); this rate increased to 33% (4/12) for G3 histology, and 66% (4/6) were rescued using AMBI. Early complications were documented in 5 patients (14%). With a median follow-up of 97 (range, 42-138) months, 5-year rates of local, elsewhere, locoregional, and distant control were all 97.2%. 5-year ipsilateral breast tumor recurrence rates (IBTR) were 5.6% (2/36), 8.3% (2/24) for AMBI, and 0% (0/12) for A-PHDRBT-boost patients. Both instances of IBTR were confirmed G3 tumors in pre-operative biopsies; no IBTR was documented in G1-2 tumors. Cosmetic outcomes were excellent/good in 96% of AMBI vs. 67% in A-PHDRBT-boost (p = 0.034). Conclusions: The MITBI-PHDRBT program allows selection of patients with excellent prognoses (G1-2 DCIS with negative margins and no multifocality), for whom AMBI could be a good alternative with low recurrence rate, decrease of unnecessary radiation, treatment logistics improvement, and over-treatment reduction. Patients whose pre-operative biopsy showed G3 tumor, presents with inferior local control and more risk of reoperation due to positive margins
    corecore