2 research outputs found

    The neural substrates of deliberative decision making: contrasting effects of hippocampus lesions on performance and vicarious trial-and-error behavior in a spatial memory task and a visual discrimination task

    Get PDF
    Vicarious trial-and-errors (VTEs) are back-and-forth movements of the head exhibited by rodents and other animals when faced with a decision. These behaviors have recently been associated with prospective sweeps of hippocampal place cell firing, and thus may reflect a rodent model of deliberative decision-making. The aim of the current study was to test whether the hippocampus is essential for VTEs in a spatial memory task and in a simple visual discrimination (VD) task. We found that lesions of the hippocampus with ibotenic acid produced a significant impairment in the accuracy of choices in a serial spatial reversal (SR) task. In terms of VTEs, whereas sham-lesioned animals engaged in more VTE behavior prior to identifying the location of the reward as opposed to repeated trials after it had been located, the lesioned animals failed to show this difference. In contrast, damage to the hippocampus had no effect on acquisition of a VD or on the VTEs seen in this task. For both lesion and sham-lesion animals, adding an additional choice to the VD increased the number of VTEs and decreased the accuracy of choices. Together, these results suggest that the hippocampus may be specifically involved in VTE behavior during spatial decision making

    Experience, cortisol reactivity, and the coordination of emotional responses to skydiving

    No full text
    Physiological habituation to laboratory stressors has previously been demonstrated, although the literature remains equivocal. Previous studies have found skydiving to be a salient naturalistic stressor that elicits a robust subjective and physiological stress response. However, it is uncertain whether (or how) stress reactivity habituates to this stressor given that skydiving remains a risky, life-threatening challenge with every jump despite experience. While multiple components of a stress response have been documented, it is unclear whether there is an individual’s subjective emotions are related to their physiological responses. Documenting coordinated responsivity would lend insight into shared underlying mechanisms for the nature of habituation of both subjective (emotion) and objective (cortisol) stress responses. Therefore, we examined subjective emotion and cortisol responses in first-time compared to experienced skydivers in a predominantly male sample (total n = 44; males = 32, females = 12). Hierarchical linear modeling revealed that experienced skydivers showed less reactivity and faster recovery compared to first-time skydivers. Subjective emotions were coordinated with physiological responses primarily within first-time skydivers. Pre-jump anxiety predicted cortisol reactivity within first-time, but not experienced, skydivers. Higher post-jump happiness predicted faster cortisol recovery after jumping although this effect overlapped somewhat with the effect of experience. Results suggest that experience may modulate the coordination of emotional response with cortisol reactivity to skydiving. Prior experience does not appear to extinguish the stress response but rather alters the individual’s engagement of the HPA axis
    corecore