3,078 research outputs found

    Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells

    Get PDF
    Background Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer. Methods Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6, CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK inhibition with MYC dependence in breast cancer cells. Results Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells. In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation of the pro-apoptotic molecule BIM and was p53-independent. Conclusions Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for MYC-dependent breast cancer is warranted.</p

    Selective measurement of anti-tTG antibodies in coeliac disease and IgA deficiency : an alternative pathway

    Get PDF
    Objective To determine the ability of selective antibody testing to screen for coeliac disease in the presence of IgA deficiency and to define the sensitivity of a pathway using this method (Figure1). Method All IgA and IgG anti-tTG tests performed at our centre between January 2008 and December 2009, using the Immunocap 250 analyser, were retrospectively reviewed. Positive results were correlated with histology. Results were used to validate our diagnostic pathway. Results 12,289 consecutive serological tests were reviewed. IgA deficient patients gave either an “error” reading or very low response on the Immunocap 250 analyser. Subsequent testing of this sub-group demonstrated raised IgG anti-tTG antibodies in those with histologically proven coeliac disease. Conclusions Using our antibody screening pathway, which involves the selective use of IgG antitTG, sensitivity increased from 87% to 92% in those with IgA deficiency. Adoption of this pathway for coeliac screening would negate the routine screening of immunoglobulin levels, with resultant cost saving

    Unoccluded Retinol Penetrates Human Skin In Vivo More Effectively Than Unoccluded Retinyl Palmitate or Retinoic Acid

    Get PDF
    The formation of all-trans retinoic acid is an oxidative process whereby retinol is converted to retinaldehyde and then to retinoic acid. Because retinol causes qualitative molecular changes similar to those produced by retinoic acid, we compared potency of retinol, retinaldehyde, and retinyl palmitate to retinoic acid and assessed the effects of occlusion. Retinoids were prepared in an experimental vehicle of 95% ethanol:propylene glycol (7:3) with anti-oxidant. Induction of retinoic acid 4-hydroxylase activity was the end point for comparison. Retinoic acid concentrations from 0.001% to 0.05% under occlusion produced a linear dose-response induction of 4-hydroxylase activity. The concentrations of the other retinoids under occlusion required to achieve significant induction of enzyme activity were 0.6% retinyl palmitate, 0.025% retinol, and 0.01% retinaldehyde. The linear dose-response was lost with retinoid concentrations in excess of 0.25% retinol or 0.5% retinaldehyde. Statistical analyses showed no difference in 4-hydroxylase activity between unocciuded and occluded retinol treated sites. By contrast, however, unoccluded sites treated with retinoic acid or retinyl palmitate had less induction of 4-hydroxylase activity than occluded sites. Retinol, retinaldehyde, and retinyl palmitate did not produce erythema but did increase epidermal thickness. Although retinol is a weaker retinoid than retinoic acid, the increased penetration of unoccluded retinol in comparison to unoccluded retinoic acid with this prototypic vehicle confers on retinol a more effective delivery of a retinoidal effect than unocciuded retinoic acid. Retinol at 0.25% may be a useful retinoid for application without occlusion because it does not irritate but does induce cellular and molecular changes similar to those observed with application of 0.025% retinoic acid
    • …
    corecore