24 research outputs found
Extremely Red Galaxies at z = 5-9 with MIRI and NIRSpec:Dusty Galaxies or Obscured Active Galactic Nuclei?
We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W > 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W < 28 mag and photometric redshifts between 5 < z < 7, with median z = 6.9 − 1.6 + 1.0 . Surprisingly, despite their red long-wavelength colors, these EROs have blue short-wavelength colors (F150W − F200W ∼ 0 mag) indicative of bimodal spectral energy distributions (SEDs) with a red, steep slope in the rest-frame optical, and a blue, flat slope in the rest-frame UV. Moreover, all these EROs are unresolved, point-like sources in all NIRCam bands. We analyze the SEDs of eight of them with MIRI and NIRSpec observations using stellar population models and active galactic nucleus (AGN) templates. We find that dusty galaxies or obscured AGNs provide similarly good SED fits but different stellar properties: massive and dusty, log M ⋆ / M ⊙ ∼ 10 and A V ≳ 3 mag, or low mass and obscured, log M ⋆ / M ⊙ ∼ 7.5 and A V ∼ 0 mag, hosting an obscured quasi-stellar object (QSO). SED modeling does not favor either scenario, but their unresolved sizes are more suggestive of AGNs. If any EROs are confirmed to have log M ⋆ / M ⊙ ≳ 10.5, it would increase the pre-JWST number density at z > 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the L bol > 1045-46 erg s−1 range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</p
Recommended from our members
Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery
Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection
Extremely Red Galaxies at z = 5-9 with MIRI and NIRSpec:Dusty Galaxies or Obscured Active Galactic Nuclei?
We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W > 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W < 28 mag and photometric redshifts between 5 < z < 7, with median z = 6.9 − 1.6 + 1.0 . Surprisingly, despite their red long-wavelength colors, these EROs have blue short-wavelength colors (F150W − F200W ∼ 0 mag) indicative of bimodal spectral energy distributions (SEDs) with a red, steep slope in the rest-frame optical, and a blue, flat slope in the rest-frame UV. Moreover, all these EROs are unresolved, point-like sources in all NIRCam bands. We analyze the SEDs of eight of them with MIRI and NIRSpec observations using stellar population models and active galactic nucleus (AGN) templates. We find that dusty galaxies or obscured AGNs provide similarly good SED fits but different stellar properties: massive and dusty, log M ⋆ / M ⊙ ∼ 10 and A V ≳ 3 mag, or low mass and obscured, log M ⋆ / M ⊙ ∼ 7.5 and A V ∼ 0 mag, hosting an obscured quasi-stellar object (QSO). SED modeling does not favor either scenario, but their unresolved sizes are more suggestive of AGNs. If any EROs are confirmed to have log M ⋆ / M ⊙ ≳ 10.5, it would increase the pre-JWST number density at z > 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the L bol > 1045-46 erg s−1 range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</p
Recommended from our members
Extremely red galaxies at z = 5-9 with MIRI and NIRSpec: dusty galaxies or obscured active galactic nuclei?
We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W > 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the L bol > 1045-46 erg s−1 range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</p