5 research outputs found

    Investigating Voice as a Biomarker for Leucine-Rich Repeat Kinase 2-Associated Parkinson's Disease

    Get PDF
    We investigate the potential association between leucine-rich repeat kinase 2 (LRRK2) mutations and voice. Sustained phonations ('aaah' sounds) were recorded from 7 individuals with LRRK2-associated Parkinson's disease (PD), 17 participants with idiopathic PD (iPD), 20 non-manifesting LRRK2-mutation carriers, 25 related non-carriers, and 26 controls. In distinguishing LRRK2-associated PD and iPD, the mean sensitivity was 95.4% (SD 17.8%) and mean specificity was 89.6% (SD 26.5%). Voice features for non-manifesting carriers, related non-carriers, and controls were much less discriminatory. Vocal deficits in LRRK2-associated PD may be different than those in iPD. These preliminary results warrant longitudinal analyses and replication in larger cohorts

    Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    Get PDF
    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation

    Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Human Molecular Genetics 2003

    No full text
    An expanded CAG repeat is the underlying genetic defect in Huntington disease, a disorder characterized by motor, psychiatric and cognitive deficits and striatal atrophy associated with neuronal loss. An accurate animal model of this disease is crucial for elucidation of the underlying natural history of the illness and also for testing experimental therapeutics. We established a new yeast artificial chromosome (YAC) mouse model of HD with the entire human HD gene containing 128 CAG repeats (YAC128) which develops motor abnormalities and age-dependent brain atrophy including cortical and striatal atrophy associated with striatal neuronal loss. YAC128 mice exhibit initial hyperactivity, followed by the onset of a motor deficit and finally hypokinesis. The motor deficit in the YAC128 mice is highly correlated with striatal neuronal loss, providing a structural correlate for the behavioral changes. The natural history of HD-related changes in the YAC128 mice has been defined, demonstrating the presence of huntingtin inclusions after the onset of behavior and neuropathological changes. The HD-related phenotypes of the YAC128 mice show phenotypic uniformity with low inter-animal variability present, which together with the age-dependent striatal neurodegeneration make it an ideal mouse model for the assessment of neuroprotective and other therapeutic interventions

    Clustering of motor and nonmotor traits in leucine-rich repeat kinase 2 G2019S Parkinson's disease nonparkinsonian relatives: A multicenter family study

    No full text
    Objectives: The objective of this study was to determine phenotypic features that differentiate nonparkinsonian first-degree relatives of PD leucine-rich repeat kinase 2 (LRRK2) G2019S multiplex families, regardless of carrier status, from healthy controls because nonparkinsonian individuals in multiplex families seem to share a propensity to present neurological features. Methods: We included nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases and unrelated healthy controls participating in established multiplex family LRRK2 cohorts. Study participants underwent neurologic assessment including cognitive screening, olfaction testing, and questionnaires for daytime sleepiness, depression, and anxiety. We used a multiple logistic regression model with backward variable selection, validated with bootstrap resampling, to establish the best combination of motor and nonmotor features that differentiates nonparkinsonian first-degree relatives of LRRK2 G2019S familial PD cases from unrelated healthy controls. Results: We included 142 nonparkinsonian family members and 172 unrelated healthy controls. The combination of past or current symptoms of anxiety (adjusted odds ratio, 4.16; 95% confidence interval, 2.01-8.63), less daytime sleepiness (adjusted odds ratio [1 unit], 0.90; 95% confidence interval, 0.83-0.97], and worse motor UPDRS score (adjusted odds ratio [1 unit], 1.4; 95% confidence interval, 1.20-1.67) distinguished nonparkinsonian family members, regardless of LRRK2 G2019S mutation status, from unrelated healthy controls. The model accuracy was good (area under the curve = 79.3%). Conclusions: A set of motor and nonmotor features distinguishes first-degree relatives of LRRK2 G2019S probands, regardless of mutation status, from unrelated healthy controls. Environmental or non-LRRK2 genetic factors in LRRK2-associated PD may influence penetrance of the LRRK2 G2019S mutation. The relationship of these features to actual PD risk requires longitudinal observation of LRRK2 familial PD cohorts. © 2018 International Parkinson and Movement Disorder Society
    corecore