22 research outputs found
DataSheet_1_TNFα: TNFR1 signaling inhibits maturation and maintains the pro-inflammatory programming of monocyte-derived macrophages in murine chronic granulomatous disease.docx
IntroductionLoss of NADPH oxidase activity results in proinflammatory macrophages that contribute to hyperinflammation in Chronic Granulomatous Disease (CGD). Previously, it was shown in a zymosan-induced peritonitis model that gp91phox-/- (CGD) monocyte-derived macrophages (MoMacs) fail to phenotypically mature into pro-resolving MoMacs characteristic of wild type (WT) but retain the ability to do so when placed in the WT milieu. Accordingly, it was hypothesized that soluble factor(s) in the CGD milieu thwart appropriate programming.MethodsWe sought to identify key constituents using ex vivo culture of peritoneal inflammatory leukocytes and their conditioned media. MoMac phenotyping was performed via flow cytometry, measurement of efferocytic capacity and multiplex analysis of secreted cytokines. Addition of exogenous TNFα, TNFα neutralizing antibody and TNFR1-/- MoMacs were used to study the role of TNFα: TNFR1 signaling in MoMac maturation.ResultsMore extensive phenotyping defined normal MoMac maturation and demonstrated failure of maturation of CGD MoMacs both ex vivo and in vivo. Protein components, and specifically TNFα, produced and released by CGD neutrophils and MoMacs into conditioned media was identified as critical to preventing maturation. Exogenous addition of TNFα inhibited WT MoMac maturation, and its neutralization allowed maturation of cultured CGD MoMacs. TNFα neutralization also reduced production of IL-1β, IL-6 and CXCL1 by CGD cells though these cytokines played no role in MoMac programming. MoMacs lacking TNFR1 matured more normally in the CGD milieu both ex vivo and following adoptive transfer in vivo.DiscussionThese data lend mechanistic insights into the utility of TNFα blockade in CGD and to other diseases where such therapy has been shown to be beneficial.</p
Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic disease of the distal lung alveoli that culminates in respiratory failure and reduced lifespan. Unlike normal lung repair in response to injury, IPF is associated with the accumulation and persistence of fibroblasts and myofibroblasts, as well as continued production of collagen and other extracellular matrix (ECM) components. Prior in vitro studies have led to the hypothesis that the development of resistance to Fas-induced apoptosis by lung fibroblasts and myofibroblasts contributes to their accumulation in the distal lung tissues of IPF patients. Here, we test this hypothesis in vivo in the resolving model of bleomycin-induced pulmonary fibrosis in mice. Using genetic loss-of-function approaches to inhibit Fas signaling in fibroblasts, potentially novel flow cytometry strategies to quantify lung fibroblast subsets, and transcriptional profiling of lung fibroblasts by bulk and single cell RNA sequencing, we show that Fas is necessary for lung fibroblast apoptosis during homeostatic resolution of bleomycin-induced pulmonary fibrosis in vivo. Furthermore, we show that loss of Fas signaling leads to the persistence and continued profibrotic functions of lung fibroblasts. Our studies provide insights into the mechanisms that contribute to fibroblast survival, persistence, and continued ECM deposition in the context of IPF and how failure to undergo Fas-induced apoptosis impairs fibrosis resolution
Alveolar macrophage lipid burden correlates with clinical improvement in patients with pulmonary alveolar proteinosis
Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients
TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts
TGF beta is a multifunctional cytokine that is important in the pathogenesis of pulmonary fibrosis. The ability of TGF beta to stimulate smooth muscle actin and extracellular matrix gene expression in fibroblasts is well established. In this report, we evaluated the effect of TGF beta on the expression of HGF, FGF7 (KGF), and FGF10, important growth and survival factors for the alveolar epithelium. These growth factors are important for maintaining type II cells and for restoration of the epithelium after lung injury. Under conditions of normal serum supplementation or serum withdrawal TGF beta inhibited fibroblast expression of HGF, FGF7, and FGF10. We confirmed these observations with genome wide RNA sequencing of the response of control and IPF fibroblasts to TGF beta. In general, gene expression in IPF fibroblasts was similar to control fibroblasts. Reduced expression of HGF, FGF7, and FGF10 is another means whereby TGF beta impairs epithelial healing and promotes fibrosis after lung injury.TGF beta inhibits the important growth factors HGF, FGF7, and FGF10. This inhibition may be a very important component for the development of pulmonary fibrosis. Control and IPF fibroblasts were inhibited similarly.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145584/1/phy213794_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145584/2/phy213794.pd
Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas
Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2) had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression