12 research outputs found

    Localization of the paranodal protein Caspr in the mammalian retina

    Get PDF
    Purpose: The retina has the demanding task of encoding all aspects of the visual scene within the space of one fixation period lasting only a few hundred milliseconds. To accomplish this feat, information is encoded in specialized parallel channels and passed on to numerous central nuclei via the optic nerve. These parallel channels achieve specialization in at least three ways: the synaptic networks in which they participate, the neurotransmitter receptors expressed and the types and locations of ion channels or transporters used. Subcellular localization of receptors, channels and transporters is made yet more complex in the retina by the double duty many retinal processes serve. In the present work, we show that the protein Caspr (Contactin Associated Protein), best known for its critical role in the localization of voltage-gated ion channels at the nodes of Ranvier, is present in several types of retinal neurons including amacrine, bipolar, horizontal, and ganglion cells. Methods: Using standard double label immunofluorescence protocols, we characterized the pattern of Caspr expression in the rodent retina. Results: Caspr labeling was observed through much of the retina, including horizontal, bipolar, amacrine, and ganglion cells. Among amacrine cells, Caspr was observed in AII amacrine cells through co-localization with Parvalbumin and Disabled-1 in rat and mouse retinas, respectively. An additional amacrine cell type containing Calretinin also co-localized with Caspr, but did not co-localize with choline-acetyltransferase. Nearly all cells in the ganglion cell layer contain Caspr, including both displaced amacrine and ganglion cells. In the outer retina, Caspr was co-localized with PKC labeling in rod bipolar cell dendrites. In addition, Caspr labeling was found inside syntaxin-4 'sandwiches' in the outer plexiform layer, most likely indicating its presence in cone bipolar cell dendrites. Finally, Caspr was co-localized in segments of horizontal cell dendrites labeled with Calbindin-D28k. Conclusions: Caspr is best known for its role in organizing the localization of different voltage-gated ion channels in and around nodes of Ranvier. As neuronal processes in the retina often play a dual role involving both input and output, it is possible that the localization of Caspr in the retina will help us decipher the way retinal cells localize ion channels in their processes to increase computational capacity

    Organization and maintenance of molecular domains in myelinated axons

    Get PDF
    Over a century ago, Ramon y Cajal first proposed the idea of a directionality involved in nerve conduction and neuronal communication. Decades later, it was discovered that myelin, produced by glial cells, insulated axons with periodic breaks where nodes of Ranvier (nodes) form to allow for saltatory conduction. In the peripheral nervous system (PNS), Schwann cells are the glia that can either individually myelinate the axon from one neuron or ensheath axons of many neurons. In the central nervous system (CNS), oligodendrocytes are the glia that myelinate axons from different neurons. Review of more recent studies revealed that this myelination created polarized domains adjacent to the nodes. However, the molecular mechanisms responsible for the organization of axonal domains are only now beginning to be elucidated. The molecular domains in myelinated axons include the axon initial segment (AIS), where various ion channels are clustered and action potentials are initiated; the node, where sodium channels are clustered and action potentials are propagated; the paranode, where myelin loops contact with the axolemma; the juxtaparanode (JXP), where delayed-rectifier potassium channels are clustered; and the internode, where myelin is compactly wrapped. Each domain contains a unique subset of proteins critical for the domain’s function. However, the roles of these proteins in axonal domain organization are not fully understood. In this review, we highlight recent advances on the molecular nature and functions of some of the components of each axonal domain and their roles in axonal domain organization and maintenance for proper neuronal communication

    Localization of the paranodal protein Caspr in the mammalian retina

    No full text
    Purpose: The retina has the demanding task of encoding all aspects of the visual scene within the space of one fixation period lasting only a few hundred milliseconds. To accomplish this feat, information is encoded in specialized parallel channels and passed on to numerous central nuclei via the optic nerve. These parallel channels achieve specialization in at least three ways: the synaptic networks in which they participate, the neurotransmitter receptors expressed and the types and locations of ion channels or transporters used. Subcellular localization of receptors, channels and transporters is made yet more complex in the retina by the double duty many retinal processes serve. In the present work, we show that the protein Caspr (Contactin Associated Protein), best known for its critical role in the localization of voltage-gated ion channels at the nodes of Ranvier, is present in several types of retinal neurons including amacrine, bipolar, horizontal, and ganglion cells. Methods: Using standard double label immunofluorescence protocols, we characterized the pattern of Caspr expression in the rodent retina. Results: Caspr labeling was observed through much of the retina, including horizontal, bipolar, amacrine, and ganglion cells. Among amacrine cells, Caspr was observed in AII amacrine cells through co-localization with Parvalbumin and Disabled-1 in rat and mouse retinas, respectively. An additional amacrine cell type containing Calretinin also co-localized with Caspr, but did not co-localize with choline-acetyltransferase. Nearly all cells in the ganglion cell layer contain Caspr, including both displaced amacrine and ganglion cells. In the outer retina, Caspr was co-localized with PKC labeling in rod bipolar cell dendrites. In addition, Caspr labeling was found inside syntaxin-4 'sandwiches' in the outer plexiform layer, most likely indicating its presence in cone bipolar cell dendrites. Finally, Caspr was co-localized in segments of horizontal cell dendrites labeled with Calbindin-D28k. Conclusions: Caspr is best known for its role in organizing the localization of different voltage-gated ion channels in and around nodes of Ranvier. As neuronal processes in the retina often play a dual role involving both input and output, it is possible that the localization of Caspr in the retina will help us decipher the way retinal cells localize ion channels in their processes to increase computational capacity

    Pinceau Organization in the Cerebellum Requires Distinct Functions of Neurofascin in Purkinje and Basket Neurons during Postnatal Development

    No full text
    Basket axon collaterals synapse onto the Purkinje soma/axon initial segment (AIS) area to form specialized structures, the pinceau, which are critical for normal cerebellar function. Mechanistic details of how the pinceau become organized during cerebellar development are poorly understood. Loss of cytoskeletal adaptor protein Ankyrin G (AnkG) results in mislocalization of the cell adhesion molecule Neurofascin (Nfasc) at the Purkinje AIS and abnormal organization of the pinceau. Loss of Nfasc in adult Purkinje neurons leads to slow disorganization of the Purkinje AIS and pinceau morphology. Here we utilized mouse conditional knockout techniques to show that selective loss of Nfasc specifically in Purkinje neurons during early development prevented maturation of the AIS and resulted in loss of Purkinje neuron spontaneous activity and pinceau disorganization. Loss of Nfasc in both Purkinje and basket neurons caused abnormal basket axon collateral branching and targeting to Purkinje soma/AIS, leading to extensive pinceau disorganization, Purkinje neuron degeneration and severe ataxia. Our studies reveal that the Purkinje Nfasc is required for AIS maturation and for maintaining stable contacts between basket axon terminals and the Purkinje AIS during pinceau organization, while the basket neuron Nfasc in combination with Purkinje Nfasc is required for proper basket axon collateral outgrowth and targeting to Purkinje soma/AIS. Thus, cerebellar pinceau organization requires coordinated mechanisms involving specific Nfasc functions in both Purkinje and basket neurons

    Advantages and limitations of hiPSC-derived neurons for the study of neurodegeneration

    No full text
    Neurodegenerative diseases, such as Alzheimer's disease (AD), are expensive, common, and will likely increase as the population ages. The lack of significant therapeutic development indicates that further research is needed on various cellular mechanisms that contribute to neurodegeneration. Human-induced pluripotent stem cell (hiPSC) technology has provided living, dynamic cellular models to address this challenge. Here, we discuss these models in the context of AD and related dementias and review the insights these models have made into disease mechanisms. We include discussion of genetic forms of AD and strong AD risk factors and discuss how these are modeled in both two-dimensional cultures and three-dimensional cerebral organoids. We address the limitations of the system, in particular how to incorporate brain aging, and we summarize drug discovery efforts using hiPSC-derived neurons
    corecore