349 research outputs found

    Hearing loss self-management in older adults

    Get PDF

    Cognitive composites for genetic frontotemporal dementia: GENFI-Cog

    Get PDF
    Background: Clinical endpoints for upcoming therapeutic trials in frontotemporal dementia (FTD) are increasingly urgent. Cognitive composite scores are often used as endpoints but are lacking in genetic FTD. We aimed to create cognitive composite scores for genetic frontotemporal dementia (FTD) as well as recommendations for recruitment and duration in clinical trial design. Methods: A standardized neuropsychological test battery covering six cognitive domains was completed by 69 C9orf72, 41 GRN, and 28 MAPT mutation carriers with CDRÂź plus NACC-FTLD ≄ 0.5 and 275 controls. Logistic regression was used to identify the combination of tests that distinguished best between each mutation carrier group and controls. The composite scores were calculated from the weighted averages of test scores in the models based on the regression coefficients. Sample size estimates were calculated for individual cognitive tests and composites in a theoretical trial aimed at preventing progression from a prodromal stage (CDRÂź plus NACC-FTLD 0.5) to a fully symptomatic stage (CDRÂź plus NACC-FTLD ≄ 1). Time-to-event analysis was performed to determine how quickly mutation carriers progressed from CDRÂź plus NACC-FTLD = 0.5 to ≄ 1 (and therefore how long a trial would need to be). Results: The results from the logistic regression analyses resulted in different composite scores for each mutation carrier group (i.e. C9orf72, GRN, and MAPT). The estimated sample size to detect a treatment effect was lower for composite scores than for most individual tests. A Kaplan-Meier curve showed that after 3 years, ~ 50% of individuals had converted from CDRÂź plus NACC-FTLD 0.5 to ≄ 1, which means that the estimated effect size needs to be halved in sample size calculations as only half of the mutation carriers would be expected to progress from CDRÂź plus NACC FTLD 0.5 to ≄ 1 without treatment over that time period. Discussion: We created gene-specific cognitive composite scores for C9orf72, GRN, and MAPT mutation carriers, which resulted in substantially lower estimated sample sizes to detect a treatment effect than the individual cognitive tests. The GENFI-Cog composites have potential as cognitive endpoints for upcoming clinical trials. The results from this study provide recommendations for estimating sample size and trial duration

    CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia

    Get PDF
    Background: Neuroinflammation has been shown to be an important pathophysiological disease mechanism in frontotemporal dementia (FTD). This includes activation of microglia, a process that can be measured in life through assaying different glia-derived biomarkers in cerebrospinal fluid. However, only a few studies so far have taken place in FTD, and even fewer focusing on the genetic forms of FTD. Methods: We investigated the cerebrospinal fluid concentrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183 participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36 presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 symptomatic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers and 62 mutation-negative controls. Concentrations were compared between groups using a linear regression model adjusting for age and sex, with 95% bias-corrected bootstrapped confidence intervals. Concentrations in each group were correlated with the Mini-Mental State Examination (MMSE) score using non-parametric partial correlations adjusting for age. Age-adjusted z-scores were also created for the concentration of markers in each participant, investigating how many had a value above the 95th percentile of controls. Results: Only chitotriosidase in symptomatic GRN mutation carriers had a concentration significantly higher than controls. No group had higher TREM2 or YKL-40 concentrations than controls after adjusting for age and sex. There was a significant negative correlation of chitotriosidase concentration with MMSE in presymptomatic GRN mutation carriers. In the symptomatic groups, for TREM2 31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a concentration above the 95th percentile of controls. For YKL-40 this was 8% C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. Conclusions: Although chitotriosidase concentrations in GRN mutation carriers were the only significantly raised glia-derived biomarker as a group, a subset of mutation carriers in all three groups, particularly for chitotriosidase and TREM2, had elevated concentrations. Further work is required to understand the variability in concentrations and the extent of neuroinflammation across the genetic forms of FTD. However, the current findings suggest limited utility of these measures in forthcoming trials

    Longitudinal Cognitive Changes in Genetic Frontotemporal Dementia Within the GENFI Cohort

    Get PDF
    Background and ObjectivesDisease-modifying therapeutic trials for genetic frontotemporal dementia (FTD) are underway, but sensitive cognitive outcome measures are lacking. The aim of this study was to identify such cognitive tests in early stage FTD by investigating cognitive decline in a large cohort of genetic FTD pathogenic variant carriers and by investigating whether gene-specific differences are moderated by disease stage (asymptomatic, prodromal, and symptomatic).MethodsC9orf72, GRN, and MAPT pathogenic variant carriers as well as controls underwent a yearly neuropsychological assessment covering 8 cognitive domains as part of the Genetic FTD Initiative, a prospective multicenter cohort study. Pathogenic variant carriers were stratified according to disease stage using the global Clinical Dementia Rating (CDR) plus National Alzheimer\u27s Coordinating Center (NACC) FTLD score (0, 0.5, or ≄1). Linear mixed-effects models were used to investigate differences between genetic groups and disease stages as well as the 3-way interaction between time, genetic group, and disease stage.ResultsA total of 207 C9orf72, 206 GRN, and 86 MAPT pathogenic variant carriers and 255 controls were included. C9orf72 pathogenic variant carriers performed lower on attention, executive function, and verbal fluency from CDR plus NACC FTLD 0 onwards, with relatively minimal decline over time regardless of the CDR plus NACC FTLD score (i.e., disease progression). The cognitive profile in MAPT pathogenic variant carriers was characterized by lower memory performance at CDR plus NACC FTLD 0.5, with decline over time in language from the CDR plus NACC FTLD 0.5 stage onwards, and executive dysfunction rapidly developing at CDR plus NACC FTLD ≄1. GRN pathogenic variant carriers declined on verbal fluency and visuoconstruction in the CDR plus NACC FTLD 0.5 stage, with progressive decline in other cognitive domains starting at CDR plus NACC FTLD ≄1.DiscussionWe confirmed cognitive decline in the asymptomatic and prodromal stage of genetic FTD. Specifically, tests for attention, executive function, language, and memory showed clear differences between genetic groups and controls at baseline, but the speed of change over time differed depending on genetic group and disease stage. This confirms the value of neuropsychological assessment in tracking clinical onset and progression and could inform clinical trials in selecting sensitive end points for measuring treatment effects as well as characterizing the best time window for starting treatment

    Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Background Therapeutic trials are now underway in genetic forms of frontotemporal dementia (FTD) but clinical outcome measures are limited. The two most commonly used measures, the Clinical Dementia Rating (CDR)+National Alzheimer\u27s Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) and the FTD Rating Scale (FRS), have yet to be compared in detail in the genetic forms of FTD. Methods The CDR+NACC FTLD and FRS were assessed cross-sectionally in 725 consecutively recruited participants from the Genetic FTD Initiative: 457 mutation carriers (77 microtubule-Associated protein tau (MAPT), 187 GRN, 193 C9orf72) and 268 family members without mutations (non-carrier control group). 231 mutation carriers (51 MAPT, 92 GRN, 88 C9orf72) and 145 non-carriers had available longitudinal data at a follow-up time point. Results Cross-sectionally, the mean FRS score was lower in all genetic groups compared with controls: GRN mutation carriers mean 83.4 (SD 27.0), MAPT mutation carriers 78.2 (28.8), C9orf72 mutation carriers 71.0 (34.0), controls 96.2 (7.7), p\u3c0.001 for all comparisons, while the mean CDR+NACC FTLD Sum of Boxes was significantly higher in all genetic groups: GRN mutation carriers mean 2.6 (5.2), MAPT mutation carriers 3.2 (5.6), C9orf72 mutation carriers 4.2 (6.2), controls 0.2 (0.6), p\u3c0.001 for all comparisons. Mean FRS score decreased and CDR+NACC FTLD Sum of Boxes increased with increasing disease severity within each individual genetic group. FRS and CDR+NACC FTLD Sum of Boxes scores were strongly negatively correlated across all mutation carriers (r s =-0.77, p\u3c0.001) and within each genetic group (r s =-0.67 to-0.81, p\u3c0.001 in each group). Nonetheless, discrepancies in disease staging were seen between the scales, and with each scale and clinician-judged symptomatic status. Longitudinally, annualised change in both FRS and CDR+NACC FTLD Sum of Boxes scores initially increased with disease severity level before decreasing in those with the most severe disease: controls-0.1 (6.0) for FRS,-0.1 (0.4) for CDR+NACC FTLD Sum of Boxes, asymptomatic mutation carriers-0.5 (8.2), 0.2 (0.9), prodromal disease-2.3 (9.9), 0.6 (2.7), mild disease-10.2 (18.6), 3.0 (4.1), moderate disease-9.6 (16.6), 4.4 (4.0), severe disease-2.7 (8.3), 1.7 (3.3). Sample sizes were calculated for a trial of prodromal mutation carriers: over 180 participants per arm would be needed to detect a moderate sized effect (30%) for both outcome measures, with sample sizes lower for the FRS. Conclusions Both the FRS and CDR+NACC FTLD measure disease severity in genetic FTD mutation carriers throughout the timeline of their disease, although the FRS may be preferable as an outcome measure. However, neither address a number of key symptoms in the FTD spectrum, for example, motor and neuropsychiatric deficits, which future scales will need to incorporate

    The CBI-R detects early behavioural impairment in genetic frontotemporal dementia

    Get PDF
    Introduction: Behavioural dysfunction is a key feature of genetic frontotemporal dementia (FTD) but validated clinical scales measuring behaviour are lacking at present. Methods: We assessed behaviour using the revised version of the Cambridge Behavioural Inventory (CBI-R) in 733 participants from the Genetic FTD Initiative study: 466 mutation carriers (195 C9orf72, 76 MAPT, 195 GRN) and 267 non-mutation carriers (controls). All mutation carriers were stratified according to their global CDR plus NACC FTLD score into three groups: asymptomatic (CDR = 0), prodromal (CDR = 0.5) and symptomatic (CDR = 1+). Mixed-effects models adjusted for age, education, sex and family clustering were used to compare between the groups. Neuroanatomical correlates of the individual domains were assessed within each genetic group. Results: CBI-R total scores were significantly higher in all CDR 1+ mutation carrier groups compared with controls [C9orf72 mean 70.5 (standard deviation 27.8), GRN 56.2 (33.5), MAPT 62.1 (36.9)] as well as their respective CDR 0.5 groups [C9orf72 13.5 (14.4), GRN 13.3 (13.5), MAPT 9.4 (10.4)] and CDR 0 groups [C9orf72 6.0 (7.9), GRN 3.6 (6.0), MAPT 8.5 (13.3)]. The C9orf72 and GRN 0.5 groups scored significantly higher than the controls. The greatest impairment was seen in the Motivation domain for the C9orf72 and GRN symptomatic groups, whilst in the symptomatic MAPTgroup, the highest-scoring domains were Stereotypic and Motor Behaviours and Memory and Orientation. Neural correlates of each CBI-R domain largely overlapped across the different mutation carrier groups. Conclusions: The CBI-R detects early behavioural change in genetic FTD, suggesting that it could be a useful measure within future clinical trials

    Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort.

    Get PDF
    A key symptom of frontotemporal dementia (FTD) is difficulty interacting socially with others. Social cognition problems in FTD include impaired emotion processing and theory of mind difficulties, and whilst these have been studied extensively in sporadic FTD, few studies have investigated them in familial FTD. Facial Emotion Recognition (FER) and Faux Pas (FP) recognition tests were used to study social cognition within the Genetic Frontotemporal Dementia Initiative (GENFI), a large familial FTD cohort of C9orf72, GRN, and MAPT mutation carriers. 627 participants undertook at least one of the tasks, and were separated into mutation-negative healthy controls, presymptomatic mutation carriers (split into early and late groups) and symptomatic mutation carriers. Groups were compared using a linear regression model with bootstrapping, adjusting for age, sex, education, and for the FP recognition test, language. Neural correlates of social cognition deficits were explored using a voxel-based morphometry (VBM) study. All three of the symptomatic genetic groups were impaired on both tasks with no significant difference between them. However, prior to onset, only the late presymptomatic C9orf72 mutation carriers on the FER test were impaired compared to the control group, with a subanalysis showing differences particularly in fear and sadness. The VBM analysis revealed that impaired social cognition was mainly associated with a left hemisphere predominant network of regions involving particularly the striatum, orbitofrontal cortex and insula, and to a lesser extent the inferomedial temporal lobe and other areas of the frontal lobe. In conclusion, theory of mind and emotion processing abilities are impaired in familial FTD, with early changes occurring prior to symptom onset in C9orf72 presymptomatic mutation carriers. Future work should investigate how performance changes over time, in order to gain a clearer insight into social cognitive impairment over the course of the disease

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • 

    corecore