2,215 research outputs found

    Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats

    Get PDF
    We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, “A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats” (Taneja et al., 2016) [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy

    Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    Full text link
    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem - why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows non-canonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t). Upcoming observations, such as a high redshift supernova survey, application of the Alcock-Paczynski test to quasar pairs, and cluster evolution, will strongly constrain the relative scaling of dark matter and dark energy as well as the equation of state of the dark energy. Thus, whether there actually is a coincidence problem, and the extent of cosmic coincidence in the universe's recent past can be answered observationally in the near future. Determining whether today is a special time in the history of the universe will be a SNAP.Comment: 5 pages, 3 figures, revtex4, submitted to PR

    Alteration in P-glycoprotein Functionality Affects Intrabrain Distribution of Quinidine More Than Brain Entry—A Study in Rats Subjected to Status Epilepticus by Kainate

    Get PDF
    This study aimed to investigate the use of quinidine microdialysis to study potential changes in brain P-glycoprotein functionality after induction of status epilepticus (SE) by kainate. Rats were infused with 10 or 20 mg/kg quinidine over 30 min or 4 h. Plasma, brain extracellular fluid (brain ECF), and end-of-experiment total brain concentrations of quinidine were determined during 7 h after the start of the infusion. Effect of pretreatment with tariquidar (15 mg/kg, administered 30 min before the start of the quinidine infusion) on the brain distribution of quinidine was assessed. This approach was repeated in kainate-treated rats. Quinidine kinetics were analyzed with population modeling (NONMEM). The quinidine microdialysis assay clearly revealed differences in brain distribution upon changes in P-glycoprotein functionality by pre-administration of tariquidar, which resulted in a 7.2-fold increase in brain ECF and a 40-fold increase in total brain quinidine concentration. After kainate treatment alone, however, no difference in quinidine transport across the blood–brain barrier was found, but kainate-treated rats tended to have a lower total brain concentration but a higher brain ECF concentration of quinidine than saline-treated rats. This study did not provide evidence for the hypothesis that P-glycoprotein function at the blood–brain barrier is altered at 1 week after SE induction, but rather suggests that P-glycoprotein function might be altered at the brain parenchymal level

    A Case of Recurrent Multifocal Central Giant Cell Granulomas

    Get PDF
    One case of recurrent multifocal central giant cell granulomas (CGCG) is presented. Initially, the lesions presented concurrently in the maxilla and mandible with subsequent recurrence in the mandible. Now, two recurrences are seen in the maxillary sinus and ethmoid region. The literature regarding multifocal CGCG is reviewed

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate.</p> <p>Methods</p> <p><it>(R)</it>-[<sup>11</sup>C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on <it>(R)</it>-[<sup>11</sup>C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. <it>(R)</it>-[<sup>11</sup>C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM).</p> <p>Results</p> <p>All data analysis approaches indicated only modest differences in brain distribution of <it>(R)</it>-[<sup>11</sup>C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats.</p> <p>Conclusions</p> <p>P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.</p

    Molecular Biomarker Analyses Using Circulating Tumor Cells

    Get PDF
    Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs) isolated from blood of metastatic cancer patients hold significant promise in this regard.Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF). We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89%) we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%), HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC capture efficiency to enable routine biomarker analysis from CTCs
    corecore