5 research outputs found

    Surface Water Withdrawals for Marcellus Shale Gas Development: Performance of Alternative Regulatory Approaches in the Upper Ohio River Basin

    No full text
    Almost all of the water used for developing Marcellus Shale gas is withdrawn from surface water sources. State environmental and interstate water authorities take different approaches to managing these withdrawals. In the Upper Ohio River Basin, which covers the western third of Pennsylvania, the Pennsylvania Department of Environmental Protection requires that all water sources used for development have an approved water management plan. For surface water sources the plans stipulate the amount and timing of withdrawals from each source as a function of annual streamflow statistics. Neighboring regulatory authorities and some environmental groups now favor the use of monthly streamflow statistics to establish the conditions for water withdrawals. Our analysis indicates that, given the state of flow measurement data in the Upper Ohio River Basin, the annual streamflow statistics are more likely to prevent water withdrawals during the driest times of the year when aquatic ecosystems are most stressed, and to result in fewer and smaller occurrences of computed low-flow ecodeficits

    Modeling Nanosilver Transformations in Freshwater Sediments

    No full text
    Silver nanoparticles (AgNPs), an effective antibacterial agent, are a significant and fast-growing application of nanotechnology in consumer goods. The toxicity of AgNPs released to surface waters during the use or disposal of AgNP-containing products will depend on the chemical transformations the nanoparticles undergo in the environment. We present a simple one-dimensional diagenetic model for predicting AgNP distribution and silver speciation in freshwater sediments. The model is calibrated to data collected from AgNP-dosed large-scale freshwater wetland mesocosms. The model predicts that AgNP sulfidation will retard nanoparticle oxidation and ion release. The resultant Ag<sub>2</sub>S-coated AgNPs are expected to persist and accumulate in sediment downstream from sources of AgNPs. Silver speciation and persistence in the sediment depend on the seasonally variable availability of organic carbon and dissolved oxygen. The half-life of typical sulfidized (85% Ag<sub>2</sub>S) AgNPs may vary from less than 10 years to over a century depending on redox conditions. No significant difference in silver speciation and distribution is observed between ā‰„50% Ag<sub>2</sub>S and 100% Ag<sub>2</sub>S AgNPs. Formation and efflux of toxic silver ion is reduced in eutrophic systems and maximized in oligotrophic systems

    Stream Dynamics and Chemical Transformations Control the Environmental Fate of Silver and Zinc Oxide Nanoparticles in a Watershed-Scale Model

    No full text
    Mathematical models are needed to estimate environmental concentrations of engineered nanoparticles (NPs), which enter the environment upon the use and disposal of consumer goods and other products. We present a spatially resolved environmental fate model for the James River Basin, Virginia, that explores the influence of daily variation in streamflow, sediment transport, and stream loads from point and nonpoint sources on water column and sediment concentrations of zinc oxide (ZnO) and silver (Ag) NPs and their reaction byproducts over 20 simulation years. Spatial and temporal variability in sediment transport rates led to high NP transport such that less than 6% of NP-derived metals were retained in the river and sediments. Chemical transformations entirely eliminated ZnO NPs and doubled Zn mobility in the stream relative to Ag. Agricultural runoff accounted for 23% of total metal stream loads from NPs. Average NP-derived metal concentrations in the sediment varied spatially up to 9 orders of magnitude, highlighting the need for high-resolution models. Overall, our results suggest that ā€œfirst generationā€ NP risk models have probably misrepresented NP fate in freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment transport

    Time and Nanoparticle Concentration Affect the Extractability of Cu from CuO NP-Amended Soil

    No full text
    We assess the effect of CuO nanoparticle (NP) concentration and soil aging time on the extractability of Cu from a standard sandy soil (Lufa 2.1). The soil was dosed with CuO NPs or CuĀ­(NO3)Ā­2 at 10 mg/kg or 100 mg/kg of total added Cu, and then extracted using either 0.01 M CaCl<sub>2</sub> or 0.005 M diethylenetriaminepentaacetic acid (DTPA) (pH 7.6) extraction fluid at selected times over 31 days. For the high dose of CuO NPs, the amount of DTPA-extractable Cu in soil increased from 3 wt % immediately after mixing to 38 wt % after 31 days. In contrast, the extractability of CuĀ­(NO<sub>3</sub>)<sub>2</sub> was highest initially, decreasing with time. The increase in extractability was attributed to dissolution of CuO NPs in the soil. This was confirmed with synchrotron X-ray absorption near edge structure measurements. The CuO NP dissolution kinetics were modeled by a first-order dissolution model. Our findings indicate that dissolution, concentration, and aging time are important factors that influence Cu extractability in CuO NP-amended soil and suggest that a time-dependent series of extractions could be developed as a functional assay to determine the dissolution rate constant

    CuO Nanoparticle Dissolution and Toxicity to Wheat (<i>Triticum aestivum)</i> in Rhizosphere Soil

    No full text
    It has been suggested, but not previously measured, that dissolution kinetics of soluble nanoparticles such as CuO nanoparticles (NPs) in soil affect their phytotoxicity. An added complexity is that such dissolution is also affected by the presence of plant roots. Here, we measured the rate of dissolution of CuO NPs in bulk soil, and in soil in which wheat plants (<i>Triticum aestivum)</i> were grown under two soil NP dosing conditions: (a) freshly added CuO NPs (500 mg Cu/kg soil) and (b) CuO NPs aged for 28 d before planting. At the end of the plant growth period (14 d), available Cu was measured in three different soil compartments: bulk (not associated with roots), loosely attached to roots, and rhizosphere (soil firmly attached to roots). The labile Cu fraction increased from 17 mg/kg to 223 mg/kg in fresh treatments and from 283 mg/kg to 305 mg/kg in aged treatments over the growth period due to dissolution. Aging CuO NPs increased the toxicity to <i>Triticum aestivum</i> (reduction in root maximal length). The presence of roots in the soil had opposite and somewhat compensatory effects on NP dissolution, as measured in rhizosphere soil. pH increased 0.4 pH units for fresh NP treatments and 0.6 pH units for aged NPs. This lowered CuO NP dissolution in rhizosphere soil. Exudates from <i>T. aestivum</i> roots also increased soluble Cu in pore water. CaCl<sub>2</sub> extractable Cu concentrations increaed in rhizosphere soil compared to bulk soil, from 1.8 mg/kg to 6.2 mg/kg inĀ fresh treatment and from 3.4 mg/kg to 5.4 mg/kg inĀ aged treatments. Our study correlated CuO NP dissolution and the resulting Cu ion exposure profile to phytotoxicity, and showed that plant-induced changes in rhizosphere conditions should be considered when measuring the dissolution of CuO NPs near roots
    corecore