3 research outputs found
Antiphospholipid Antibody Syndrome-Associated Increased Surface Expression of VLA4 Integrin on Human Monocytes
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis and/or obstetric complications in the presence of antiphospholipid antibodies (aPL). Catastrophic APS (CAPS) is the most severe form of the disease, in which microvascular thromboses develop rapidly, leading to multiorgan failure. Monocytes, along with endothelial cells, are critical players in the pathogenesis of APS. Recruitment of these cells to the site of injury/inflammation involves a series of events, including capture, rolling, adhesion enhancement, and transmigration, which are controlled by surface adhesion molecules. The aim of our study was to investigate the surface adhesion profile of monocytes from APS patients and monocytes stimulated in vitro with aPL from a CAPS patient. The surface expression of the adhesion molecules LFA1, L-selectin, MAC1, PSGL1, and VLA4 was analyzed by flow cytometry. To our knowledge, this preliminary study was the first to show that VLA4 was significantly increased on the surface of monocytes from APS patients. Moreover, in vitro stimulations mimicking CAPS showed an even greater increase in VLA4. Our data suggest that the surface adhesion profile on monocytes is altered in APS and CAPS and may be involved in the thrombotic pathophysiology of the disease by enhancing monocyte adhesion
Characterization of Plasma-Derived Small Extracellular Vesicles Indicates Ongoing Endothelial and Platelet Activation in Patients with Thrombotic Antiphospholipid Syndrome
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, characterized by thrombosis, obstetric complications and the presence of antiphospholipid antibodies (aPL), which drive endothelial injury and thrombophilia. Extracellular vesicles (EVs) have been implicated in endothelial and thrombotic pathologies. Here, we characterized the quantity, cellular origin and the surface expression of biologically active molecules in small EVs (sEVs) isolated from the plasma of thrombotic APS patients (n = 14), aPL-negative patients with idiopathic thrombosis (aPL-neg IT, n = 5) and healthy blood donors (HBD, n = 7). Nanoparticle tracking analysis showed similar sEV sizes (110-170 nm) between the groups, with an increased quantity of sEVs in patients with APS and aPL-neg IT compared to HBD. MACSPlex analysis of 37 different sEV surface markers showed endothelial (CD31), platelet (CD41b and CD42a), leukocyte (CD45), CD8 lymphocyte and APC (HLA-ABC) cell-derived sEVs. Except for CD8, these molecules were comparably expressed in all study groups. sEVs from APS patients were specifically enriched in surface expression of CD62P, suggesting endothelial and platelet activation in APS. Additionally, APS patients exhibited increased CD133/1 expression compared to aPL-neg IT, suggesting endothelial damage in APS patients. These findings demonstrate enhanced shedding, and distinct biological properties of sEVs in thrombotic APS
Characterization of plasma-derived small extracellular vesicles indicates ongoing endothelial and platelet activation in patients with thrombotic antiphospholipid syndrome
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, characterized by thrombosis, obstetric complications and the presence of antiphospholipid antibodies (aPL), which drive endothelial injury and thrombophilia. Extracellular vesicles (EVs) have been implicated in endothelial and thrombotic pathologies. Here, we characterized the quantity, cellular origin and the surface expression of biologically active molecules in small EVs (sEVs) isolated from the plasma of thrombotic APS patients (n = 14), aPL-negative patients with idiopathic thrombosis (aPL-neg IT, n = 5) and healthy blood donors (HBD, n = 7). Nanoparticle tracking analysis showed similar sEV sizes (110–170 nm) between the groups, with an increased quantity of sEVs in patients with APS and aPLneg IT compared to HBD. MACSPlex analysis of 37 different sEV surface markers showed endothelial (CD31), platelet (CD41b and CD42a), leukocyte (CD45), CD8 lymphocyte and APC (HLA-ABC) cell-derived sEVs. Except for CD8, these molecules were comparably expressed in all study groups. sEVs from APS patients were specifically enriched in surface expression of CD62P, suggesting endothelial and platelet activation in APS. Additionally, APS patients exhibited increased CD133/1 expression compared to aPL-neg IT, suggesting endothelial damage in APS patients. These findings demonstrate enhanced shedding, and distinct biological properties of sEVs in thrombotic APS