4 research outputs found

    A subset of methylated CpG sites differentiate psoriatic from normal skin.

    Get PDF
    Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared with normal skin. However, to our knowledge, global epigenetic profiling of psoriatic skin is previously unreported. Here, we describe a genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly upregulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples with uninvolved skin exhibiting intermediate methylation. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional upregulation is an important discriminator of psoriasis. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed reversion of methylation levels toward the non-psoriatic state after 1 month of anti-TNF-Ξ± therapy

    Locations and patterns of meiotic recombination in two-generation pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meiotic crossovers are the major mechanism by which haplotypes are shuffled to generate genetic diversity. Previously available methods for the genome-wide, high-resolution identification of meiotic crossover sites are limited by the laborious nature of the assay (as in sperm typing).</p> <p>Methods</p> <p>Several methods have been introduced to identify crossovers using high density single nucleotide polymorphism (SNP) array technologies, although programs are not widely available to implement such analyses.</p> <p>Results</p> <p>Here we present a two-generation "reverse pedigree analysis" method (analyzing the genotypes of two children relative to each parent) and a web-accessible tool to determine and visualize inheritance differences among siblings and crossover locations on each parental gamete. This approach is complementary to existing methods and uses informative markers which provide high resolution for locating meiotic crossover sites. We introduce a segmentation algorithm to identify crossover sites, and used a synthetic data set to determine that the segmentation algorithm specificity was 92% and sensitivity was 89%. The use of reverse pedigrees allows the inference of crossover locations on the X chromosome in a maternal gamete through analysis of two sons and their father. We further analyzed genotypes from eight multiplex autism families, observing a 1.462 maternal to paternal recombination ratio and no significant differences between affected and unaffected children. Meiotic recombination results from pediSNP can also be used to identify haplotypes that are shared by probands within a pedigree, as we demonstrated with a multiplex autism family.</p> <p>Conclusion</p> <p>Using "reverse pedigrees" and defining unique sets of genotype markers within pedigree data, we introduce a method that identifies inherited allelic differences and meiotic crossovers. We implemented the method in the pediSNP software program, and we applied it to several data sets. This approach uses data from two generations to identify crossover sites, facilitating studies of recombination in disease. pediSNP is available online at <url>http://pevsnerlab.kennedykrieger.org/pediSNP</url>.</p
    corecore