104 research outputs found

    The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency

    Get PDF
    Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis

    Structural and ultrastructural alterations in human olfactory pathways and possible associations with herpesvirus 6 infection

    Get PDF
    Publisher Copyright: © 2017 Skuja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them.publishersversionPeer reviewe

    The Role of Neutrophil Proteins on the Amyloid Beta-RAGE Axis

    Get PDF
    We would like to thank Dr. Arthur Owora, previously a Research Biostatistician of the Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, for his assistance on the statistical analysis performed in this study. We thank Dr. Sixia Chen of the Department of Biostatistics and Epidemiogy, University of Oklahoma Health Sciences Center, for his additional input on the statistical analysis. We thank the Laboratory for Molecular Biology and Cytometry Research at the University of Oklahoma Health Sciences Center for the use of the Core Facility which allowed us to perform the MALDI-TOF MS and MS/MS experiments. GM-0111 was provided as a gift by Dr. Justin Savage, GlycoMira Therapeutics, Inc.We previously showed an elevated expression of the neutrophil protein, cationic antimicrobial protein of 37kDa (CAP37), in brains of patients with Alzheimer’s disease (AD), suggesting that CAP37 could be involved in AD pathogenesis. The first step in determining how CAP37 might contribute to AD pathogenesis was to identify the receptor through which it induces cell responses. To identify a putative receptor, we performed GAMMA analysis to determine genes that positively correlated with CAP37 in terms of expression. Positive correlations with ligands for the receptor for advanced glycation end products (RAGE) were observed. Additionally, CAP37 expression positively correlated with two other neutrophil proteins, neutrophil elastase and cathepsin G. Enzyme-linked immunosorbent assays (ELISAs) demonstrated an interaction between CAP37, neutrophil elastase, and cathepsin G with RAGE. Amyloid beta 1–42 (Aβ1–42), a known RAGE ligand, accumulates in AD brains and interacts with RAGE, contributing to Aβ1–42 neurotoxicity. We questioned whether the binding of CAP37, neutrophil elastase and/or cathepsin G to RAGE could interfere with Aβ1–42 binding to RAGE. Using ELISAs, we determined that CAP37 and neutrophil elastase inhibited binding of Aβ1–42 to RAGE, and this effect was reversed by protease inhibitors in the case of neutrophil elastase. Since neutrophil elastase and cathepsin G have enzymatic activity, mass spectrometry was performed to determine the proteolytic activity of all three neutrophil proteins on Aβ1–42. All three neutrophil proteins bound to Aβ1–42 with different affinities and cleaved Aβ1–42 with different kinetics and substrate specificities. We posit that these neutrophil proteins could modulate neurotoxicity in AD by cleaving Aβ1–42 and influencing the Aβ1–42 –RAGE interaction. Further studies will be required to determine the biological significance of these effects and their relevance in neurodegenerative diseases such as AD. Our findings identify a novel area of study that underscores the importance of neutrophils and neutrophil proteins in neuroinflammatory diseases such as AD.Yeshttp://www.plosone.org/static/editorial#pee

    Connexin43 Containing Gap Junction Channels Facilitate HIV Bystander Toxicity: Implications in NeuroHIV

    No full text
    Human immunodeficiency virus-1 (HIV-1) infection compromises the central nervous system (CNS) in a significant number of infected individuals, resulting in neurological dysfunction that ranges from minor cognitive deficits to frank dementia. While macrophages/microglia are the predominant CNS cells infected by HIV, our laboratory and others have shown that HIV-infected astrocytes, although present in relatively low numbers with minimal to undetectable viral replication, play key role in NeuroAIDS pathogenesis. Our laboratory has identified that HIV “hijacks” connexin (Cx) containing channels, such as gap junctions (GJs) and hemichannels (HCs), to spread toxicity and apoptosis to uninfected cells even in the absence of active viral replication. In this study, using a murine model with an astrocyte-directed deletion of Cx43 gene (hGFAP-cre Cx43fl/fl) and control Cx43fl/fl mice, we examined whether few HIV-infected human astrocytoma cells (U87-CD4-CCR5), microinjected into the mouse cortex, can spread toxicity and apoptosis through GJ-mediated mechanisms, into the mouse cells, which are resistant to HIV infection. In the control Cx43fl/fl mice, microinjection of HIV-infected U87-CD4-CCR5 cells led to apoptosis in 84.28 ± 6.38% of mouse brain cells around the site of microinjection, whereas hGFAP-cre Cx43fl/fl mice exhibited minimal apoptosis (2.78 ± 1.55%). However, simultaneous injection of GJ blocker, 18α-glycyrrhetinic acid, and Cx43 blocking peptide along with microinjection of HIV-infected cells prevented apoptosis in Cx43fl/fl mice, demonstrating the Cx43 is essential for HIV-induced bystander toxicity. In conclusion, our findings demonstrate that Cx43 expression, and formation of GJs is essential for bystander apoptosis during HIV infection. These findings reveal novel potential therapeutic targets to reduce astrocyte-mediated bystander toxicity in HIV-infected individuals because despite low to undetectable viral replication in the CNS, Cx channels hijacked by HIV amplify viral neuropathogenesis

    The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis

    No full text
    The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population

    Immunometabolism in Tuberculosis

    Get PDF
    Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia inducible factor 1 alpha (HIF-1), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains
    corecore