241 research outputs found

    Cu I resonance lines in turn-off stars of NGC 6752 and NGC 6397. Effects of granulation from CO5BOLD models

    Get PDF
    Context. Copper is an element whose interesting evolution with metallicity is not fully understood. Observations of copper abundances rely on a very limited number of lines, the strongest are the Cu I lines of Mult. 1 at 324.7 nm and 327.3 nm which can be measured even at extremely low metallicities. Aims. We investigate the quality of these lines as abundance indicators. Method. We measure these lines in two turn-off (TO) stars in the Globular Cluster NGC 6752 and two TO stars in the Globular Cluster NGC 6397 and derive abundances with 3D hydrodynamical model atmospheres computed with the CO5BOLD code. These abundances are compared to the Cu abundances measured in giant stars of the same clusters, using the lines of Mult. 2 at 510.5 nm and 578.2 nm. Results. The abundances derived from the lines of Mult. 1 in TO stars differ from the abundances of giants of the same clusters. This is true both using CO5BOLD models and using traditional 1D model atmospheres. The LTE 3D corrections for TO stars are large, while they are small for giant stars. Conclusions. The Cu I resonance lines of Mult. 1 are not reliable abundance indicators. It is likely that departures from LTE should be taken into account to properly describe these lines, although it is not clear if these alone can account for the observations. An investigation of these departures is indeed encouraged for both dwarfs and giants. Our recommendation to those interested in the study of the evolution of copper abundances is to rely on the measurements in giants, based on the lines of Mult. 2. We caution, however, that NLTE studies may imply a revision in all the Cu abundances, both in dwarfs and giants.Comment: to be published on A\&

    Lithium abundance in a turnoff halo star on an extreme orbit

    Get PDF
    The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8\textless{}[Fe/H] \textless{}-2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. The recently identified very high velocity star, WISE J072543.88-235119.7 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.The abundance ratios in WISE J072543.88-235119.7 are those typical of old turnoff stars. The lithium abundance in this star ~is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars

    Overview of the lithium problem in metal-poor stars and new results on 6Li

    Full text link
    Two problems are discussed here. The first one is the 0.4 dex discrepancy between the 7Li abundance derived from the spectra of metal-poor halo stars on the one hand, and from Big Bang nucleosynthesis, based on the cosmological parameters constrained by the WMAP measurements, on the other hand. Lithium, indeed, can be depleted in the convection zone of unevolved stars. The understanding of the hydrodynamics of the crucial zone near the bottom of the convective envelope in dwarfs or turn-off stars of solar metallicity has recently made enormous progress with the inclusion of internal gravity waves. However, similar work for metal-poor stars is still lacking. Therefore it is not yet clear whether the depletion occurring in the metal-poor stars themselves is adequate to produce a 7Li plateau. The second problem pertains to the large amount of 6Li recently found in metal-poor halo stars. The convection-related asymmetry of the 7Li line could mimic the signal attributed so far to the weak blend of 6Li in the red wing of the 7Li line. Theoretical computations show that the signal generated by the asymmetry of 7Li is 2.0, 2.1, and 3.7 per cent for [Fe/H]= -3.0, -2.0, -1.0, respectively (Teff =6250 K and log g=4.0 [cgs]). In addition we re-investigate the statistical properties of the 6Li plateau and show that previous analyses were biased. Our conclusion is that the 6Li plateau can be reinterpreted in terms of intrinsic line asymmetry, without the need to invoke a contribution of 6Li. (abridged)Comment: Invited talk at the 10th Symposium on Nuclei in the Cosmos - July 27 - August 1 2008 - Mackinac Island, Michigan, USA, Accepted version. Minor changes following referee's suggestion

    Intrinsic colour calibration for F, G, K stars

    Get PDF
    We derive an intrinsic colour calibration for F--K stars using broad band Johnson colours and line indices KP and HP2. Through this calibration we can determine E(B-V) of an individual star within 0.03 mag. The E(B-V) values thus derived are in excellent agreement with those derived from Stromgren photometry through the Schuster & Nissen (1989) calibration. The agreement is also good with the reddening maps of Burstein & Heiles (1982) and Schlegel et al (1998), although in this case there exists a small offset of about 0.01 mag. This calibration may be applied to the large body of data of the HK survey extension which will be published in the near future.Comment: To be published in A&A

    The photospheric solar oxygen project: II. Non-concordance of the oxygen abundance derived from two forbidden lines

    Full text link
    In the Sun, the two forbidden [OI] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances. aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars. method: We make use of high-resolution, high signal-to-noise ratio spectra of four dwarf to turn-off stars, five giant stars, and one sub-giant star observed with THEMIS, HARPS, and UVES to investigate the coherence of the two lines. results: The two lines provide oxygen abundances that are consistent, within observational errors, in all the giant stars examined by us. On the other hand, for the two dwarf stars for which a measurement was possible, for Procyon, and for the sub-giant star Capella, the 636 nm line provides systematically higher oxygen abundances, as already seen for the Sun. conclusions: The only two possible reasons for the discrepancy are a serious error in the oscillator strength of the NiI line blending the 630 nm line or the presence of an unknown blend in the 636 nm line, which makes the feature stronger. The CN lines blending the 636 nm line cannot be responsible for the discrepancy. The CaI autoionisation line, on the red wing of which the 636 nm line is formed, is not well modelled by our synthetic spectra. However, a better reproduction of this line would result in even higher abundances from the 636 nm, thus increasing the discrepancy.Comment: A&A accepte

    An astrophysical oscillator strength for the SII 94.7 nm resonance line and S abundances in DLAs

    Full text link
    By using UV spectra for the O star HD 93521 taken with the ORFEUS II echelle spectrograph, we determine an ``astrophysical'' f value for the SII 94.7 nm line: f = 0.00498 (+0.00172)(-0.00138), error at 1 sigma level.This is almost a factor of 30 smaller than the guessed value found in the Kurucz database (f=0.1472), which was up to now the only one available for this transition. We use our ``astrophysical'' f to investigate the S abundance in two Damped Ly-alpha absorption systems (DLAs) observed with UVES at the ESO 8.2m Kueyen telescope. In the case of the absorber at zabs=3.02486 towards QSO 0347-3819 we find a sulphur column density which is consistent, within errors, with that determined by Centurion et al by means of the 125.9 nm line, thus providing an external check on the accuracy of our f value. For the damped absorber at zabs=4.4680 towards BR J0307-4945 we determine a high value of the S abundance, which, however, is probably the result of blending with Ly-alpha forest lines.Comment: Accepted by MNRA

    An investigation of the formation and line properties of MgH in 3D hydrodynamical model stellar atmospheres

    Get PDF
    Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of one-dimensional (1D) model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5^5BOLD models of dwarfs (4000KTeff5160K\lesssim T_\mathrm{eff}\lesssim5160K, 4.04.0\leqlog(g)4.5\leq4.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0) and giants (Teff4000T_\mathrm{eff}\sim4000K, log(g)=1.5=1.5, 3.0[Fe/H]1.0-3.0\leq[\mathrm{Fe/H}]\leq-1.0), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex largest for our 5000K models. The corrections are correlated with TeffT_\mathrm{eff} and are also affected by the metallicity. The shape of the strong 24^{24}MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25^{25}MgH by up to 5\sim5 percentage points and overestimating 24^{24}MgH by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26^{26}MgH is recovered relatively well, with the largest difference being 2\sim2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.Comment: 20 pages, 15 figures, accepted for publication in Ap
    corecore