14 research outputs found
Recommended from our members
Tissue-regenerative potential of the secretome of γ-irradiated peripheral blood mononuclear cells is mediated via TNFRSF1B-induced necroptosis.
Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic factors in response to γ-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the pro-angiogenic potential of bioactive molecules released by γ-irradiated PBMCs. PBMCs and PBMC subpopulations, including CD4+ and CD8+ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose γ-irradiation. Transcriptome analysis revealed subpopulation-specific responses to γ-irradiation with distinct activation of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result was confirmed at the functional level by the finding that the secretome of γ-irradiated PBMCs displayed higher pro-angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of γ-irradiated PBMCs revealed distinct morphological changes, indicative for apoptotic and necroptotic cell death. While inhibition of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily member 1B as the main driver of necroptosis in response to γ-irradiation in PBMCs, which was most likely mediated via membrane-bound TNF-α. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of γ-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based therapies in regenerative medicine
Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future
Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%
Heat shock protein 27 as a predictor of prognosis in patients admitted to hospital with acute COPD exacerbation
Episodes of acute exacerbations are major drivers of hospitalisation and death from COPD. To date, there are no objective biomarkers of disease activity or biomarkers to predict patient outcome. In this study, 211 patients hospitalised for an acute exacerbation of COPD have been included. At the time of admission,routine blood tests have been performed including complete blood count, C-reactive protein, cardiac troponin T and NT-proBNP. Heat shock protein 27 (HSP27) serum concentrations were determined at time of admission, discharge and 180 days after discharge by ELISA. We were able to demonstrate significantly increased HSP27 serum concentrations in COPD patients at time of admission to hospital as compared to HSP27 concentrations obtained 180 days after discharge. In univariable Cox regression analyses, a HSP27 serum concentration >/= 3098 pg/mL determined at admission was a predictor of all-cause mortality at 90 days, 180 days, 1 year and 3 years. In multivariable analyses, an increased HSP27 serum concentration at admission retained its prognostic ability with respect to all-cause mortality for up to 1year follow-up. However, an increased HSP27 serum concentration at admission was not an independent predictor of long-term all-cause mortality at 3 years. Elevated serum HSP27 concentrations significantly predicted short-term mortality in patients admitted to hospital with acute exacerbation of COPD and could help to improve outcomes by identifying high-risk patients
Fractional heat shock protein 27 urine excretion as a short-term predictor in acute exacerbation of chronic obstructive pulmonary disease
Background: Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality and is characterized by episodes of acute exacerbations. Finding a systemic biomarker that reliably predicts outcome after an acute exacerbation remains a major challenge. Heat shock protein 27 (HSP27) has been previously studied in COPD, however, urine excretion trajectory and prognostic value after an exacerbation is unknown. Methods: In this retrospective post hoc analysis of a prospective study that included 253 COPD patients who were hospitalized for acute exacerbation, 207 patients were analyzed. Urine and serum were sampled at admission, discharge, and 180 days after dischargeurine excretion trajectory was analyzed and correlated with clinicopathological and survival data. Results: HSP27 urine excretion increased after an exacerbation episode [1.8% admission, 1.8% discharge, 2.3% 180 days after discharge (P=0.091)]. In severely ill patients (GOLD IV) this course was even more distinct [1.6% admission, 2.1% discharge, 2.8% 180 days after discharge (P=0.007)]. Furthermore, fractional HSP27 urine excretion at discharge was increased in GOLD IV patients (P=0.031). In Kaplan-Meier and univariable Cox proportional hazard models patients with HSP27 urine excretion below 0.845% showed significantly worse survival at 30, 90 and 180 days after discharge. In a multivariable Cox proportional hazard model including established COPD outcome parameters fractional HSP27 urine excretion remained a significant predictor of survival at 30 and 90 days after discharge. Comparing this model to our already published model that includes HSP27 serum concentration we could show that fractional HSP27 urine excretion performs better in short-term survival. Conclusions: Our findings provide novel information about fractional HSP27 urine excretion trajectory in acute exacerbation of COPD. Fractional HSP27 urine excretion may be significantly reduced during an episode of acute exacerbation in COPD patients and may be used as a predictor of short-term all-cause mortality
Scientific Reports / Systemic release of heat-shock protein 27 and 70 following severe trauma
Trauma represents a major cause of morbidity and mortality worldwide. The endogenous inflammatory response to trauma remains not fully elucidated. Pro-inflammation in the early phase is followed by immunosuppression leading to infections, multi-organ failure and mortality. Heat-shock proteins (HSPs) act as intracellular chaperons but exert also extracellular functions. However, their role in acute trauma remains unknown. The aim of this study was to evaluate serum concentrations of HSP 27 and HSP 70 in severely injured patients. We included severely injured patients with an injury severity score of at least 16 and measured serum concentration of both markers at admission and on day two. We found significantly increased serum concentrations of both HSP 27 and HSP 70 in severely injured patients. Concomitant thoracic trauma lead to a further increase of both HSPs. Also, elevated concentrations of HSP 27 and HSP 70 were associated with poor outcome in these patients. Standard laboratory parameters did not correlate with neither HSP 27, nor with HSP 70. Our findings demonstrate involvement of systemic release of HSP 27 and HSP 70 after severe trauma and their potential as biomarker in polytraumatized patients.(VLID)492693
Recommended from our members
Subarachnoid hemorrhage in rats - Visualizing blood distribution in vivo using gadolinium-enhanced magnetic resonance imaging: Technical note.
BACKGROUND: The aims of this study were to assess the feasibility of magnetic resonance imaging (MRI) to track the in vivo distribution of autologous, injected blood in a subarachnoid hemorrhage model (SAH), and to evaluate whether this technique results in observable morphological detriment. NEW METHOD: We used an SAH model of stereotactic injection of autologous blood into the prechiasmatic cistern in Sprague Dawley rats. To visualize its in vivo distribution, a gadolinium-containing contrast agent was added to the autologous blood prior to injection. MRI was performed on a 9.4 T Bruker Biospec scanner preoperatively, as well as at variable time points between 30 min to 23 days after SAH. T1-weighted and diffusion-weighted images were acquired. The morphological examination was completed by a histopathological work-up. RESULTS: Upon injection of contrast agent-enriched autologous blood, enhancement was observed in the entire subarachnoid space within 30 min of injection. Total clearance was noted at the first postoperative day. SAH induction did not result in changes in clinical scores or on histopathological or radiological images. COMPARISON WITH EXISTING METHODS: We modified an established method to allow in vivo MRI monitoring of subarachnoid blood distribution in an SAH model. CONCLUSION: This technique could be used to evaluate the distribution of blood components during the development of novel SAH models. Since no additional morphological detriment was observed, this technique could be used as a validation tool to verify correct application and induction in preclinical SAH models